

HILTI COUPLER WOOD (HCW)

Technical Guide Update: Feb 25

Hilti Coupler Wood HCW

A fast and efficient timber fastening system for assembling prefabricated timber elements.

Table of Content

Product data	5
Design information	9
Application overview	16
Design basics	31
Load resistances for HCW, HCW-S, HCW-L in C24 and engineered timber products (ρ_k = 350 kg/m ³), e.g. CLT, GL 24 h/c	31
Load resistances for HCW and HCW-S in LVL and GLVL (ρ_k = 480 kg/m ³)	33
Load resistances Hilti Hangerbolt	34
References	36

HILTI COUPLER WOOD (HCW)

Fast and efficient timber fastening system for assembling prefabricated timber elements

Details

System parts

Hilti Coupler Wood HCW

Hilti Coupler Wood HCW-S

Hilti Coupler Wood HCW-L

Hilti Coupler Wood HCW 37x45 M12

Capable to transfer:

- (Axial) Tension loads
- (Axial) Compression loads
- Shear loads

Hilti Coupler Wood HCW-S 37x45 M12

Capable to transfer:

- Shear loads
- (Axial) Compression loads

Hilti Coupler Wood HCW-L 40x295 M12 HCW-L 40x375 M12

Capable to transfer:

• Tension (axial) loads

Hanger Bolt (for Timber-to-Timber Connections)

Hanger bolt:

- Metrical thread M12
- Timber thread acc. EN 14592
- f_{uk} ≥ 400 N/mm²
- e.g. Hilti HSW M12x220/60 8.8 or Hilti Hanger Bolt M12x140 4.6

Concrete Fasteners (for Timber-to-Concrete Connections)

Setting Tool SW HCW (S)

e.g. Expansion Anchor

HST2 V3 M12, HST3 M12 or HST4 M12

e.g. Anchor rod HAS-U M12 in combination with Hilti HIT-HY 200-A V3 injection mortar

Setting tool SW HCW for:

- HCW
- HCW-S

Quicker and more efficient setting tool for wood connectors

Enhances consistency and precision

Designed for tensile loads with a nail plate for higher tension requirements, allowing positioning

ETA 21/0357 approved

Designed for assembling and

fastening prefabricated timber-

to-timber structures

ETA 21/0357 approved

Benefits

Designed for transferring shear

Designed for factory production

Designed for transferring shear

loads, allowing positioning and

with predrilled wood members

ETA 21/0357 approved

ETA-21/0357 approved

leveling

and tensile loads, allowing positioning and leveling

Application

Hilti HCW timber connectors enable fast and efficient assembly of prefabricated timber elements.

They are available in three variants:

- HCW For tensile and shear loads
- HCW-S For shear loads only
- HCW-L For tensile loads only

The HCW and HCW-L feature an integrated clamping mechanism for easy push-to-fit installation with Hilti anchor systems.

Applications:

- Timber-to-timber connections using hanger bolts (e.g., Hilti HSW)
- Timber-to-concrete connections using mechanical stud anchors (e.g., HST3 M12, HST4 M12, HST2 V3 M12)
- Timber-to-concrete connections using chemical anchors (e.g., HAS-U M12 rods with injection mortar)
- Primary use: Fixing timber frames to concrete foundations with precise positioning, height leveling (using additional leveling nuts), and mortar gap filling

Base materials

Concrete (uncracked)

Concrete (cracked)

Solid timber

(EN 338/EN

14081)

Other information

Laminated e.g. Cross Laminated

e.g. Laminated Veneer Lumber

 Timber
 Timber
 Lumber

 Engineered timber products (acc. to ETA-21/0357)
 Engineered timber products (acc. to ETA-21/0357)
 Engineered timber products (acc. to ETA-21/0357)

Load conditions

Static / quasi-static

Seismic

PROFIS Engineering for Concrete Fastener

Hilti design tool for the entire

setting point

(timber and concrete)

Whitepaper

Linked Approvals/Certificates and Instructions for use.

Approvals/certificates

Approval no	Application / loading condition	Authority / Laboratory	Date of issue
ETA-21/0357	Static and Seismic	Danmark A/S	31-01-2025

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table.

Instructions for use (IFU)

Material	IFU
HCW	<u>IFU HCW 37 x 45</u>
HCW-S	IFU HCW-S
HCW-L	IFU HCW-L 40 x 45

Link to Hilti Webpage

回公開

System parts						
<u>HCW</u>	HCW-S	HCW-L	Hilti Hanger Bolt	HST3	HST4	<u>HAS-U 8.8</u>
Setting tool						
<u>SW SCW</u>	_					

Product data

Hilti Coupler Wood HCW

Outer of	diameter:	40 mm
Diamet	ter of the body:	37 mm
Length	:	45 mm
Materia	al:	
	- Sleeve:	11SMnPb30+C according EN 10277
	- Clamping device:	11SMnPb30, 16MnCrS5+C according EN 10277 Electroplated zinc coated ≥ 5 μm
Color		Grey

Hilti Coupler Wood HCW-S

Outer diameter:	40 mm
Diameter of the body:	37 mm
Length:	45 mm
Material:	
- Sleeve:	11SMnPb30+C according EN 10277
Color	Black

Hilti Coupler Wood HCW-L

Outer diameter, sleeve:	40 mm
Length, sleeve:	45 mm
Length:	≥ 295 mm
Width, plate:	65 mm
Thickness, plate:	2,5 mm
Hole diameter, plate:	≤ 4,9 mm
Material:	
 Sleeve and nailing plate: 	S355J2 according EN 10277
- Clamping device:	16MnCrS5+C according to EN10277.
	Electroplated zinc coated ≥ 5 µm

Dimensions:

Hole patterns:

Hole patterns for HCW-L

Hanger bolt with M12 metrical thread and timber thread according to ETA or EN 14592

Length of metrical thread M12:	l _s ≥ 40 mm
Length of timber thread:	$I_g \ge 6 \text{ x } d_{\text{nom,timber}}$ (for tensile and shear loads)
	$I_g \ge 4 \times d_{\text{nom,timber}}$ (for shear loads)
Core diameter (d _i):	8.7 mm
Material:	Steel, $f_{u,k} \ge 400 \text{ N/mm}^2$
Pre-drilling diameter:	8 mm

Hilti-products:

•

- HSW M12x220/60 8.8
 - Hangerbolt M12x140 4.6 (

(d _{nom,timber} = 11mm)	(# 2316491)
(d _{nom,timber} = 11mm)	(# 216376)

Design information

Definition of load-types $F_{ax,\alpha}$ and $F_{V,\alpha}$

HCW-L

System-axis

Definition of indices ax, V, α :

- ax: Indicates that applied loads are acting parallel to the system-axis
- V: Indicates that applied loads are acting perpendicular the system-axis (applicable for HCW and HCW-S).
- α: Indicates the angle of the applied load between HCW/HCW-S/HCW-L and the grain-orientation of the connected timber-member:

 $\alpha = 0^{\circ}$: Load is applied parallel to the grain

 α = 90°: Load is applied perpendicular to the grain

Applicable loads per connector type

(here exemplarily shown in solid timber; see also Table 2, Table 3, Table 4 and ETA-21/0357 [4])

(Axial) Tension-loads - HCW

F_{ax,α,Rk,HCW}: Characteristic withdrawal capacity for HCW, depending on α-values:

- $\alpha = 0^{\circ}$ (parallel to the grain-direction)
- α = 90° (perpendicular to the grain-direction)

Applications in the head-grain of the timber member:

• For angles $\alpha = 0^{\circ}$ between HCW-system-axis and grain-direction: $F_{ax,0,Rk}$... see Table 2 and Table 4

Only (axial) tension loads $F_{ax,0}$ shall be applied into the head-grain.

The given loads for F_{ax,0,Rk} shall only be applied for load-duration classes short-term (e.g. snow, wind) and instantaneous (e.g. wind, accidental loads).

Applications in the side grain of the timber member:

• For angles $45^{\circ} \le \alpha \le 90^{\circ}$ between HCW-setting direction and grain-direction: F_{ax,\alpha,Rk,HCW} = F_{ax,90,Rk}: see Table 2, Table 3 and Table 4

• For angles $0^{\circ} < \alpha < 45^{\circ}$ between HCW-setting direction and grain-direction: $F_{ax,\alpha,Rk,HCW} = k_{ax} * F_{ax,90,Rk}$

with

 $F_{ax,90,Rk}\ldots$ see Table 2, Table 3 and Table 4

$$k_{ax} = 0.3 + \frac{0.7 * \alpha}{45^{\circ}} < 1$$

Updated: Feb-25

(Axial) Compression-loads - HCW and HCW-S

- F_{ax,α,Rk,HCW}: Characteristic compression capacity for HCW/HCW-S, depending on α-values:
 - $\alpha = 0^{\circ}$ (parallel to the grain-direction)
 - $\alpha = 90^{\circ}$ (perpendicular to the grain-direction)

Applications in the head-grain of the timber member:

For angles $\alpha = 0^{\circ}$ between HCW-system-axis and grain-direction:

 $F_{ax,c,0,Rk} = F_{ax,0,Rk} \dots$ see Table 2 and Table 4

Only (axial) compression loads $F_{ax,c,0}$ shall be applied into the head-grain.

The given loads for $F_{ax,c,0,Rk}$ shall only be applied for the load-duration class short-term (e.g. during installation).

Applications in the side grain of the timber member:

 For angles 45° ≤ α ≤ 90° between HCW/HCW-S-setting direction and grain-direction: F_{ax,α,Rk,HCW} = F_{ax,90,Rk} = F_{ax,90,c,Rk} see Table 2, Table 3 and Table 4

(Axial) Tension-loads - HCW-L

 $F_{ax,\alpha,Rk,HCW L}$: Characteristic capacity for HCW-L, valid for $\alpha = 0^{\circ}$ (parallel to the grain-direction)

 $F_{ax,0,Rk}$ given in Table 2 are tested values with 15 or 24/25 nails. $F_{ax,0,Rk}$ can also be calculated depending on the actual used connectors (nails or screws), e.g. according to EC 5. Only tensile (axial) loads $F_{ax,0}$ shall be applied to HCW-L

Shear loads - HCW and HCW-S

 $F_{v,\alpha,Rk,HCW(-S)}$: Characteristic shear-capacity for HCW and HCW-S shall be determined for the following α -values:

 α = 0° (load direction parallel to the grain) F_{V,0,Rk} ... see Table 2 and Table 4

 α = 90° (load direction perpendicular to the grain) $F_{V,90,Rk}$... see Table 2 and Table 4

Verifications of connections in concrete

For the design of connections in concrete, the provisions given in EN 1992-4 [3] can be used even though the load is introduced by the HCW, HCW-S or HCW-L and a timber element via the Hilti anchoring system to the concrete instead of a rigid baseplate as required by EN 1992-4. This can be justified since the verification is done for a single anchor.

Tension loads on anchors

All verifications shall be carried out in accordance with the provisions given in EN 1992-4

 $N_{Ed} \le \min \{N_{Rd,s}; N_{Rd,c}; N_{Rd,p}; N_{Rd,sp}\}$ (see also page 15 ff)

Shear loads on anchors

EN 1992-4 does not offer provisions for the design of shear-loaded anchors with stand-off close to an edge.

Hilti recommends specifying shear-loaded HCW/HCW-S with stand-off according to Hilti Whitepaper_HCW [6].

The following provisions shall be taken into consideration:

Determining the relevant lever arm I_a (according to EN 1992-4):

Situation A

Situation B

With leveling nut:

Without leveling nut:

(values in mm)

With leveling nut:

$$l_a = \frac{t_{fix}}{2} + t_M + a_3 = \frac{27.5}{2} + t_M + a_3$$

Without leveling nut

$$l_a = \left(\frac{t_{fix}}{2} + 18\right) + t_M + a_3 = \left(\frac{9,5}{2} + 18\right) + t_M + a_3 = 22,8 + t_M + a_3$$

With

- t_M Thickness of leveling layer (e.g. mortar)
- a₃ = Nominal diameter of the anchor (M12 for HCW-applications) for Situation A (clamping at the concrete surface is not present / anchor not torqued to the concrete)
- a₃ = 0 for Situation B (clamping at the concrete surface is present / anchor torqued to the concrete)

Characteristic steel resistance of the concrete anchor under shear load with lever arm Improved approach for stand-off according to 'White Paper HCW'

$$V_{Rk,s,M} = \left(\sqrt{\alpha_{s,M}^2 + 1} - \alpha_{s,M}\right) \cdot V_{Rk,s} \le V_{Rk,s}$$

with

$V_{Rk,s}$	= characteristic shear resistance taken from the European Technical Assessment
$\alpha_{s,M}$	$= 1.5 \cdot l_a / \alpha_M \cdot d$
α_M	= 1.0 (single curvature) or 2.0 (double curvature) as determined by the user
$l_a =$	effective lever arm (see previous page)

Characteristic concrete edge resistance under shear load with lever-arm

The basic equation to calculate concrete edge failure in a stand-off configuration is taken from EN 1992-4:

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \psi_{s,V} \cdot \psi_{h,V} \cdot \psi_{ec,V} \cdot \psi_{\alpha,V} \cdot \psi_{re,V}$$
(EN 1992-4 (7.40); [1])

To take into account the secondary overturning moment on the concrete edge breakout resistance, a reduction factor ($\psi_{b,u}$) was developed and is used as a multiplier on the concrete edge resistance.

$$V_{Rk,c-stand-off} = V_{Rk,c} \cdot \psi_{b,u}$$

with

$$\psi_{b,u} = \frac{1}{1 + \frac{C}{d^{3/4}} \cdot \frac{l_a}{\alpha_M}}$$

C = a constant representing the elastic interaction between the anchor and concrete

$$l_a$$
 = effective exposed length (conservatively taken from EN 1992-4; [1])

 $\vec{\alpha}_{M}$ = curvature coefficient for the anchor

Application overview	Verification	Verification(s)		Page no
A) HCW-L	A1) Timber to Concrete	Tension:	\checkmark	
		Shear:	_	17
		Interaction:	_	
	A2) Timber to Timber	Tension:	\checkmark	
		Shear:	_	18
		Interaction:	_	
B) HCW in Head grain	B1) Timber to Concrete	Tension:	\checkmark	
		Shear:	_	19
		Interaction:	_	
	B2) Timber to Timber	Tension:	\checkmark	
		Shear:	_	20
		Interaction:	_	
C) HCW in Side grain	C1) Timber to Concrete	Tension:	×.	
		Shear:	\checkmark	21-23
		Interaction:	\checkmark	
	C2) Timber to Timber	Tension:	\checkmark	
		Shear:	\checkmark	24-26
		Interaction:	\checkmark	
D) HCW-S in Side grain	D1) Timber to Concrete	Tension:	_	
		Shear:	\checkmark	27-28
		Interaction:	\checkmark	
	D2) Timber to Timber	Tension:	_	
		Shear:	\checkmark	29-30
		Interaction:	\checkmark	
(HCW-S in Head grain)		Not applicable		

Table 1: Overview possible applications HCW/HCW-S/HCW-L

✓ Verification Possible

- not applicable

A1) HCW-L: Timber-to-Concrete

Proof of tensile load capacity

$$F_{ax,0,Ed} \leq \begin{cases} N_{Rd,HCW-L} \\ N_{Rd,Anchor} \end{cases}$$

with

Fax,0,EdApplied tensile design load parallel to the grain.NRd,HCW-LDecisive HCW-L related tensile design resistance.NRd,AnchorDecisive anchor-related tensile design resistance.

Verifications for HCW-L:

$$N_{Rd,HCW-L} = min \begin{cases} \frac{k_{mod} * F_{ax,0,Rk}}{\gamma_M} \\ \frac{F_{t,Rk}}{\gamma_{M,2}} \end{cases}$$

with

Load angle $\alpha = 0^{\circ}$ $F_{ax,0,Rk}$:Characteristic HCW-L axial strength for $\alpha = 0^{\circ}$ see Table 2 $F_{ax,0,Rk}$:Can also be calculated depending on the actual used connectors (nails or screws),
e.g. according to EN 1995-1-1:2010-12 [3] $F_{t,Rk}$:Characteristic tensile load capacity of HCW-L clamping mechanism see Table
kmod k_{mod} see EN 1995-1-1:2010-12 [3] γ_M see EN 1995-1-1:2010-12 [3] $\gamma_{M,2}$ see EN 1993-1-1 Chapter 6.1 [2]

Verifications for concrete anchors in Timber-to-Concrete applications:

$$N_{Rd,Anchor} = min \begin{cases} N_{Rd,s} \\ N_{Rd,p} \\ N_{Rd,c} \\ N_{Rd,sp} \end{cases}$$

with

Steel resistance
Pull-out resistance for mechanical anchors
Combined pull-out and concrete resistance for bonded anchors
Concrete cone capacity
Splitting resistance

Information about the anchor-related values is given in the related approval document (e.g. ETA) or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

Updated: Feb-25

A2) <u>HCW-L: Timber-to-Timber</u>

Proof of tensile load capacity

$$F_{ax,0,Ed} \leq \begin{cases} N_{Rd,HCW-L} \\ N_{Rd,HB} \end{cases}$$

with

F _{ax,0,Ed}	Applied tensile design load parallel to the grain.
NRd,HCW-L	Decisive HCW-L related tensile design resistance.
$N_{Rd,HB}$	Decisive Hanger Bolt-related tensile design resistance.

Verifications for HCW-L:

$N_{Rd,HCW-L} = min \begin{cases} \frac{k_{mod} * F_{ax,0,Rk}}{\gamma_M} \\ \frac{F_{t,Rk}}{\gamma_{M,2}} \end{cases}$

with

Load angle $\alpha = 0^{\circ}$		
Fax,0,Rk:	Characteristic HCW-L axial strength for $\alpha = 0^{\circ}$ see Table 2	
F _{ax,0,Rk}	Can also be calculated depending on the actual used connectors (nails or screws), e.g. according to EN 1995-1-1:2010-12 [3]	
F _{t,Rk} :	Characteristic tensile load capacity of HCW-L clamping mechanism see Table 2	
<i>k_{mod}</i>	see EN 1995-1-1:2010-12 [3]	
Yм	see EN 1995-1-1:2010-12 [3]	
ү м,2	see EN 1993-1-1 Chapter 6.1 [2]	

Verification of the Hanger Bolt in Timber-to-Timber applications:

$$N_{Rd,HB} = min \begin{cases} \frac{k_{mod} * F_{ax,Rk,HB}}{\gamma_{M}} \\ \frac{F_{t,Rk,HB}}{\gamma_{M,2}} \end{cases}$$

with

 $\begin{array}{ll} F_{ax,Rk,HB} : & Characteristic axial withdrawal capacity of the hanger bolt. \\ F_{t,Rk,HB} : & Characteristic tensile strength of the hanger bolt. \end{array}$

K _{mod}	see EN 1995-1-1:2010-12 [3]
γм	see EN 1995-1-1:2010-12 [3]
<i>Үм,2</i>	see EN 1993-1-1 Chapter 6.1 [2]

Information about the Hanger Bolt-related values is given in Chapter: Load resistances Hilti Hangerbolt

or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

B1) HCW in head grain applications: Timber-to-Concrete

Proof of tensile load capacity

$$F_{ax,0,Ed} \leq \begin{cases} N_{Rd,HCW-HG} \\ N_{Rd,Anchor} \end{cases}$$

ax,0

Fax,0,EdApplied tensile design load parallel to the grain.
(only for short-term (e.g. wind) and instantaneous loads).NRd,HCW-HGDecisive HCW-related tensile design resistance in head grain.NRd,AnchorDecisive anchor-related tensile design resistance.

HCW-related verifications:

$$N_{Rd,HCW-HG} = min \begin{cases} \frac{k_{mod} * F_{ax,0,Rk}}{\gamma_M} \\ \frac{F_{t,Rk}}{\gamma_{M,2}} \end{cases}$$

with

Load angle α =	0° for applications in headgrain
F _{ax,0,Rk} :	Characteristic HCW-withdrawal capacity for $\alpha = 0^{\circ}$ see Table 2
F _{t,Rk} :	Characteristic tensile load capacity of HCW-clamping mechanism see Table 2
<i>k_{mod}</i>	see EN 1995-1-1:2010-12 [3]
γм	see EN 1995-1-1:2010-12 [3]
ү м,2	see EN 1993-1-1 Chapter 6.1 [2]

Concrete anchor related verifications in Timber-to-Concrete applications:

$$N_{Rd,Anchor} = min \begin{cases} N_{Rd,s} \\ N_{Rd,p} \\ N_{Rd,c} \\ N_{Rd,sp} \end{cases}$$

with

$N_{Rd,s} = N_{Rk,s} / \gamma_M$	Steel resistance
$N_{Rd,p} = N_{Rk,p} / \gamma_M$	Pull-out resistance for mechanical anchors
$N_{Rd,p} = N_{Rk,p} / \gamma_M$	Combined pull-out and concrete resistance for bonded anchors
$N_{Rd,c} = N_{Rk,c} / \gamma_M$	Concrete cone capacity
$N_{Rd,sp} = N_{Rk,sp} / \gamma_M$	Splitting resistance

Information about the anchor-related values is given in the related approval document (e.g. ETA) or can be determined in the Hilti-Design Software PROFIS Engineering.

B2) HCW in headgrain applications: Timber-to-Timber

Proof of tensile load capacity

$$F_{ax,0,Ed} \leq \begin{cases} N_{Rd,HCW-HG} \\ N_{Rd,HB} \end{cases}$$

with

Fax,0,Ed	Applied tensile design load parallel to the grain.
	(only for short-term (e.g. wind) and instantaneous loads).
N _{Rd,HCW-HG}	Decisive HCW-related tensile design resistance in head grain.
$N_{Rd,HB}$	Decisive hanger bolt-related tensile design resistance.

HCW-related verifications:

$$N_{Rd,HCW-HG} = min \begin{cases} \frac{k_{mod} * F_{ax,0,Rk}}{\gamma_M} \\ \frac{F_{t,Rk}}{\gamma_{M,2}} \end{cases}$$

with

Load angle $\alpha = 0^{\circ}$ for applications in headgrainFax,0,Rk:Characteristic HCW-withdrawal capacity for $\alpha = 0^{\circ}$ see Table 2Ft,Rk:Characteristic tensile load capacity of HCW-clamping mechanism see Table 2 k_{mod} see EN 1995-1-1:2010-12 [3] γ_M see EN 1995-1-1:2010-12 [3] $\gamma_{M,2}$ see EN 1993-1-1 Chapter 6.1 [2]

Hanger Bolt related verifications in Timber-to-Timber applications:

$$N_{Rd,HB} = min \begin{cases} \frac{k_{mod} * F_{ax,Rk; HB}}{\gamma_{M}} \\ \frac{F_{t,Rk; HB}}{\gamma_{M,2}} \end{cases}$$

with

Fax,Rk; HB:	Characteristic axial withdrawal capacity, hanger bolt
F _{t,Rk; HB} :	Characteristic tensile strength of the hanger bolt

<i>k_{mod}</i>	see EN 1995-1-1:2010-12 [3]
Yм	see EN 1995-1-1:2010-12 [3]
ү м,2	see EN 1993-1-1 Chapter 6.1 [2]

Information about the Hanger Bolt-related values is given in Chapter: Load resistances Hilti Hangerbolt

or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

C1) HCW in side grain applications: Timber-to-Concrete

Proof of tensile load capacity

$$F_{ax,\alpha,Ed} \leq \begin{cases} N_{Rd,HCW-SG} \\ N_{Rd-Anchor} \end{cases}$$

with

Fax.α.Ed NRd.HCW-SG NRd,Anchor

Applied tensile design load under an angle of $0^{\circ} \le \alpha \le 90^{\circ}$ into the side grain Decisive HCW-related tensile design resistance in side grain (SG) Decisive anchor-related tensile design resistance

HCW-related verifications:

$$N_{Rd,HCW-SG} = min \begin{cases} \frac{k_{mod} * F_{ax,\alpha,Rk}}{\gamma_M} \\ \frac{F_{t,Rk}}{\gamma_{M,2}} \end{cases}$$

with

 $F_{ax,\alpha,Rk} = F_{ax,90,Rk}$ for $45^{\circ} \le \alpha \le 90^{\circ}$ Fax,α,Rk: $F_{ax,\alpha,Rk} = k_{ax} x F_{ax,90,Rk}$ for $0^{\circ} < \alpha < 45^{\circ}$

with

Fax,90,Rk according to Table 2, Table 3 and Table 4Table

and

$$k_{ax} = 0.3 + \frac{0.7 * \alpha}{45^{\circ}} < 1$$

Ft.Rk: Characteristic tensile load capacity of HCW-clamping mechanism see Table 2 see EN 1995-1-1:2010-12 [3] *k_{mod}* see EN 1995-1-1:2010-12 [3] Yм see EN 1993-1-1 Chapter 6.1 [2] **ү**м,2

Concrete anchor related verifications in Timber-to-Concrete applications:

$$N_{Rd-Anchor} = min \begin{cases} N_{Rd,s} \\ N_{Rd,p} \\ N_{Rd,c} \\ N_{Rd,sp} \end{cases}$$

with

 $N_{Rd,s} = N_{Rk,s} / \gamma_M$ Steel resistance $N_{Rd,p} = N_{Rk,p} / \gamma_M$ Pull-out resistance for mechanical anchors Combined pull-out and concrete resistance for bonded anchors $N_{Rd,p} = N_{Rk,p} / \gamma_M$ $N_{Rd,c} = N_{Rk,c} / \gamma_M$ Concrete cone capacity $N_{Rd,sp} = N_{Rk,sp} / \gamma_M$ Splitting resistance

Information about the anchor-related values is given in the related approval document (e.g. ETA) or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

Proof of shear load capacity

HCW-related verifications:

$$F_{V,0,Ed} \leq F_{v,0,Rd-HCW} = \frac{k_{mod} * F_{V,0,Rk-HCW}}{\gamma_M}$$

with

k_{mod}

Yм

Fv,0,Ed Fv,0,Rd-HCW: Fv,0,Rk-HCW: Applied design shear load parallel to the grain Design HCW-shear capacity for $\alpha = 0^{\circ}$ (parallel to the grain) Characteristic HCW-shear capacity for $\alpha = 0^{\circ}$ (parallel to the grain) see Table 2 and Table 4 see EN 1995-1-1:2010-12 [3] see EN 1995-1-1:2010-12 [3]

$$F_{v,90,Ed} \leq F_{v,90,Rd-HCW} = \frac{k_{mod} * F_{v,90,Rk-HCW}}{\gamma_M}$$

with

 $F_{V,90,Ed}$ Applied design shear load perpendicular to the grain $F_{V,90,Rd-HCW}$:Design HCW-shear capacity for $\alpha = 90^{\circ}$ (perpendicular to the grain) $F_{V,90,Rk-HCW}$:Characteristic HCW-shear capacity for $\alpha = 90^{\circ}$ (perpendicular to the grain)see Table 2 and Table 4 k_{mod} see EN 1995-1-1:2010-12 [3] γ_M see EN 1995-1-1:2010-12 [3]

Concrete anchor related verifications in Timber-to-Concrete applications:

$$F_{V,\alpha,Ed} \leq V_{Rd,anchor} = min \begin{cases} V_{Rd,s,M} \\ V_{Rd,cp} \\ V_{Rd,c} \end{cases}$$

with

F _{V,α,Ed}	Resulting design shear load; $F_{V,\alpha,Ed} = \sqrt{F_{V,90,Ed}^2 + F_{V,0,Ed}^2}$
VRd-Anchor	Decisive design resistance of the anchor
V _{Rd,s,M} = V _{Rk,s,M} / γ _M	Steel resistance with lever arm (according to Whitepaper [6])
V _{Rd,cp} = V _{Rk,cp} / γ _M	Pry-out resistance
V _{Rd,c} = V _{Rk,c} / γ _M	Concrete edge resistance (according to Whitepaper [6])

Information about the anchor-related values is given in the related approval document (e.g. ETA) or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

C1) <u>HCW in side grain applications – Timber-to-Concrete</u>

Interaction

In case of combined shear- and tension-forces transferred from HCW into the timber member/concrete the following verifications shall be verified:

HCW (Timber)

$$\left(\frac{F_{ax,90,Ed}}{F_{ax,90,Rd}}\right)^2 + \left(\frac{F_{V,0,Ed}}{F_{V,0,Rd}}\right)^2 + \left(\frac{F_{V,90,Ed}}{F_{V,90,Rd}}\right)^2 \le 1$$

Anchor (Concrete)

$$\left(\frac{F_{ax,90,Ed}}{\min\{N_{Rd,p}; N_{Rd,c}; N_{Rd,sp}\}}\right)^{1.5} + \left(\frac{F_{v,\alpha,Ed}}{\min\{V_{Rd,cp}; V_{Rd,c}\}}\right)^{1.5} \le 1$$
or
$$\left(\frac{F_{ax,90,Ed}}{\min\{N_{Rd,p}; N_{Rd,c}; N_{Rd,sp}\}}\right) + \left(\frac{F_{V,\alpha,Ed}}{\min\{V_{Rd,cp}; V_{Rd,c}\}}\right) \le 1.2$$

At least one of both equations shall be verified!

Anchor (Steel-resistance in stand-off condition)

According to Hilti-method (see Whitepaper [6]):

$$\left(\frac{F_{ax,90,Ed}}{N_{Rd,s}}\right)^2 + \frac{F_{\nu,\alpha,Ed}}{V_{Rd,s,M}} \leq 1$$

Proof of tensile load capacity

$$F_{ax,\alpha,Ed} \leq \begin{cases} N_{Rd,HCW-SG} \\ N_{Rd-HB} \end{cases}$$

with

 $\begin{array}{ll} F_{ax,\alpha,ED} & \mbox{Applied tensile design load under an angle of $0^\circ \le \alpha \le 90^\circ$ into the side grain.} \\ N_{Rd,HCW-SG} & \mbox{Decisive HCW-related tensile design resistance in side grain (SG)} \\ N_{Rd-HB} & \mbox{Decisive Hanger-Bolt related tensile design resistance.} \end{array}$

HCW-related verifications:

$$N_{Rd,HCW-SG} = min \begin{cases} F_{ax,90,Rd-HCW} = \frac{k_{mod} * F_{ax,\alpha,Rk}}{\gamma_M} \\ \frac{F_{t,Rk}}{\gamma_{M,2}} \end{cases}$$

with

F _{ax,α,Rk} :	$F_{ax,\alpha,Rk} = F_{ax,90,Rk}$	for 45°≤ α ≤ 90°
	$F_{ax,\alpha,Rk} = K_{ax} \times F_{ax,90,Rk}$	for 0° < α < 45°

with

Fax,90,Rk according to Table 2, Table 3 and Table 4Table

and

$$k_{ax} = 0.3 + \frac{0.7 * \alpha}{45^{\circ}} < 1$$

 $F_{t,Rk}$:Characteristic tensile load capacity of HCW-clamping mechanism see Table 2 k_{mod} see EN 1995-1-1:2010-12 [3] γ_M see EN 1995-1-1:2010-12 [3] $\gamma_{M,2}$ see EN 1993-1-1 Chapter 6.1 [2]

Hanger Bolt related verifications in Timber-to-Timber applications:

$$N_{Rd-HB} = min \begin{cases} F_{ax,90,Rd-HB} = \frac{k_{mod} * F_{ax,90,RK-HB}}{\gamma_M} \\ \frac{F_{t,RK-HB}}{\gamma_{M,2}} \end{cases}$$

with

N _{Rd-HB}	Decisive design resistance of the Hanger Bolt
Fax,90,Rd-HB	Design withdrawal capacity Hanger Bolt
F _{ax,90,Rk-HB}	Characteristic withdrawal capacity Hanger Bolt
F _{t,Rk-HB} :	Characteristic steel capacity Hanger Bolt
<i>k</i> _{mod}	see EN 1995-1-1:2010-12 [3]
Yм	see EN 1995-1-1:2010-12 [3]
ү м,2	see EN 1993-1-1 Chapter 6.1 [2]

Information about the Hanger Bolt-related values is given in Chapter: Load resistances Hilti Hangerbolt

or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

C2) HCW in side grain applications – Timber-to-Timber

Proof of shear load capacity

HCW-related verifications:

$$F_{V,0,Ed} \le F_{V,0,Rd-HCW} = \frac{k_{mod} * F_{V,0,Rk-HCW}}{\gamma_M}$$

with
FV.0.E

k_{mod}

Yм

Applied design shear load parallel to the grain ($\alpha = 0^{\circ}$)),Ed Design HCW-shear capacity for $\alpha = 0^{\circ}$ (parallel to the grain) Fv,0,Rd-HCW: Characteristic shear capacity of HCW for $\alpha = 0^{\circ}$ (parallel to the grain) Fv,0,Rk-HCW: see Table 2 and Table 4 see EN 1995-1-1:2010-12 [3] see EN 1995-1-1:2010-12 [3]

$$F_{V,90,Ed} \le F_{v,90,Rd-HCW} = \frac{k_{mod} * F_{V,90,Rk-HCW}}{\gamma_M}$$

with

$F_{V,90,Ed}$	Applied design shear load perpendicular to the grain ($\alpha = 0^{\circ}$)
Fv,90,Rd-HCW:	Design HCW-shear capacity for α = 90° (perpendicular to the grain)
Fv,90,Rk-HCW:	Characteristic shear capacity of HCW for α = 90° (perpendicular to the grain) see Table 2 and Table 4
<i>k</i> _{mod}	see EN 1995-1-1:2010-12 [3]
Ύм	see EN 1995-1-1:2010-12 [3]

Hanger Bolt related verifications in Timber-to-Timber applications:

$$F_{V,\alpha,Ed} \le F_{V,Rd,HB} = k_{mod} * \frac{F_{V,Rk,HB}}{\gamma_M}$$

with

$F_{V,\alpha,Ed}$	Resulting design shear load; $F_{\nu,\alpha,ED} = \sqrt{F_{\nu,90,Ed}^2 + F_{\nu,0,Ed}^2}$
Fv,rd,нв Fv,rk,нв	Design shear resistance Hanger Bolt Characteristic shear resistance Hanger Bolt
k _{mod}	see EN 1995-1-1:2010-12 [3]
γм	see EN 1995-1-1:2010-12 [3]

Information about the Hanger Bolt-related values is given in Chapter: Load resistances Hilti Hangerbolt

or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

C2) <u>HCW in side grain applications – Timber-to-Timber</u>

Interaction

In case of combined shear- and tension-forces transferred from HCW Into the timber members the following verifications shall be fulfilled:

HCW (Timber)

$$\left(\frac{F_{ax,90,Ed}}{F_{ax,90,Rd-HCW}}\right)^2 + \left(\frac{F_{V,0,Ed}}{F_{V,0,Rd}}\right)^2 + \left(\frac{F_{V,90,Ed}}{F_{V,90,Rd}}\right)^2 \le 1$$

Hanger Bolt (Timber)

$$\left(\frac{F_{ax,90,Ed}}{N_{Rd-HB}}\right)^2 + \left(\frac{F_{V,\alpha,Ed}}{F_{V,\alpha,Rd-HB}}\right)^2 \le 1$$

D1) HCW-S in side grain applications – Timber-to-Concrete

Proof of shear load capacity

HCW-S related verifications:

$$F_{V,0,Ed} \le F_{\nu,0,Rd-HCW-S} = \frac{k_{mod} * F_{V,0,Rk-HCW-S}}{\gamma_M}$$

with

k_{mod}

Yм

F_{V,0,Ed} F_{V,0,Rd-HCW-S}: F_{V,0,Rk-HCW-S}:

Applied design shear load parallel to the grain ($\alpha = 0^{\circ}$) Design shear capacity of HCW-S for $\alpha = 0^{\circ}$ (parallel to the grain) Characteristic shear capacity of HCW-S for $\alpha = 0^{\circ}$ (parallel to the grain) see Table 2 and Table 4 see EN 1995-1-1:2010-12 [3] see EN 1995-1-1:2010-12 [3]

$$F_{V,90,Ed} \le F_{V,90,Rd-HCW-S} = \frac{k_{mod} * F_{V,90,Rk-HCW-S}}{\gamma_M}$$

with	
$F_{V,90,Ed}$	Applied design shear load perpendicular to the grain
Fv,90,Rd-HCW-s:	Design shear capacity of HCW-S for α = 90° (perpendicular to the grain)
Fv,90,Rk-HCW-S:	Characteristic shear capacity of HCW-S for α = 90° (perpendicular to the grain)
	see Table 2 and Table 4
<i>k_{mod}</i>	see EN 1995-1-1:2010-12 [3]
γм	see EN 1995-1-1:2010-12 [3]

Concrete anchor related verifications in Timber-to-Concrete applications:

$$F_{V,\alpha,Ed} \leq V_{Rd,anchor} = min \begin{cases} V_{Rd,s,M} \\ V_{Rd,cp} \\ V_{Rd,c} \end{cases}$$

with

$F_{V,\alpha,Ed}$	Resulting design shear load; $F_{V,\alpha,Ed} = \sqrt{F_{V,90,Ed}^2 + F_{V,0,Ed}^2}$
VRd-Anchor	Decisive design resistance of the anchor
	Steel resistance with lever arm (according to Whitepaper [6]) Pry-out resistance Concrete edge resistance (according to Whitepaper [6])

Information about the anchor-related values is given in the related approval document (e.g. ETA) or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

D1) HCW-S in side grain applications – Timber-to-Concrete

Interaction

In case of combined shear- and tension-forces transferred from HCW-S Into the timber member/concrete the following verifications shall be fulfilled:

HCW-S (Timber)

$$\left(\frac{F_{V,0,Ed}}{F_{V,0,Rd-HCW-S}}\right)^{2} + \left(\frac{F_{V,90,Ed}}{F_{V,90,Rd-HCW-S}}\right)^{2} \leq 1$$

Anchor (Concrete) - no interaction required (no tensile load)

Anchor (Steel-resistance in stand-off condition) - no interaction required (no tensile load)

D2) HCW-S in side grain applications – Timber-to-Timber

Proof of shear load capacity

HCW-S-related verifications:

$$F_{V,0,Ed} \le F_{v,0,Rd-HCW-S} = \frac{k_{mod} * F_{V,0,Rk-HCW-S}}{\gamma_M}$$

with

F_{V,0,Ed} F_{V,0,Rd-HCW-S}:

F_{V,0,Rk-HCW-S}: *k_{mod}*

Yм

Applied design shear load parallel to the grain ($\alpha = 0^{\circ}$) Design shear capacity of HCW-S for $\alpha = 0^{\circ}$ (parallel to the grain) Characteristic shear capacity of HCW-S for $\alpha = 0^{\circ}$ (parallel to the grain) see Table 2 and Table 4 see EN 1995-1-1:2010-12 [3] see EN 1995-1-1:2010-12 [3]

$$F_{V,90,Ed} \le F_{V,90,Rd-HCW-S} = \frac{k_{mod} * F_{V,90,Rk-HCW-S}}{\gamma_M}$$

with	
F _{V,90,Ed}	Applied design shear load perpendicular to the grain
Fv,90,Rd-HCW-S:	Design shear capacity of HCW-S for α = 90° (perpendicular to the grain)
Fv,90,Rk-HCW-S:	Characteristic shear capacity of HCW-S for $\alpha = 90^{\circ}$ (perpendicular to the grain)
	see Table 2 and Table 4
<i>k_{mod}</i>	see EN 1995-1-1:2010-12 [3]
γм	see EN 1995-1-1:2010-12 3

Hanger Bolt related verifications in Timber-to-Timber applications:

$$F_{V,\alpha,Ed} \leq F_{V,\alpha,Rd,HB} = k_{mod} * \frac{F_{V,Rk,HB}}{\gamma_M}$$

with

$F_{V,\alpha,Ed}$	Resulting design shear load; $F_{\nu,\alpha,ED} = \sqrt{F_{\nu,90,Ed}^2 + F_{\nu,0,Ed}^2}$
Fv,rd,нв Fv,rk,нв	Design shear resistance Hanger Bolt Characteristic shear resistance Hanger Bolt
<i>k_{mod}</i>	see EN 1995-1-1:2010-12 [3]
Yм	see EN 1995-1-1:2010-12 [3]

Information about the Hanger Bolt-related values is given in Chapter: **Load resistances Hilti Hangerbolt** or can be determined in the HCW-Design Module in Software 'ingtools' (www.ingtools.de).

D2) <u>HCW-S in side grain applications – Timber-to-Timber</u>

Interaction

In case of combined shear-forces transferred from HCW-S Into the timber members the following verification shall be fulfilled:

HCW (Timber)

$$\left(\frac{F_{V,0,Ed}}{F_{V,0,Rd-HCW-S}}\right)^2 + \left(\frac{F_{V,90,Ed}}{F_{V,90,Rd-HCW-S}}\right)^2 \leq 1$$

Hanger Bolt (Timber) - no interaction required

Design basics

Load resistances for HCW, HCW-S, HCW-L in C24 and engineered timber products (ρ_k = 350 kg/m³),

e.g. CLT, GL 24 h/c

		Fastener type		Timber			
Parameter	Туре	Nails/ Screws	Rod	Edge distance [mm]	Min cross- section [mm²]	Characteristic Load carrying capacities [kN]	
Tension Strength	HCW-L HCW HCW-S	-	M12, 4.6 M12, 8.8			F _{t,Rk}	30,0 42,0
Axial Strength	HCW-L 40x295	15 nails ²⁾ 25 nails ²⁾	M12, ≥ 4.6	a _{3,t} ≥ 58,5 ⁵⁾ a _{4,c} ≥ 20	45 x 80	F _{ax,0,Rk}	39,0 45,0
, such ett engut	HCW-L 40x375	15 nails ²⁾ 24 nails ²⁾	M12, ≥ 4.6	a _{3,t} ≥ 60 a _{4,c} ≥ 20	45 x 80	F _{ax,0,Rk}	39,0 45,0
Withdrawal capacity parallel to the grain direction	HCW	-	M12, ≥ 4.6	a _{2,c} ≥ 50	100 x 100	F _{ax,0,Rk} ⁷⁾	11,8
Withdrawal capacity perpendicular to the grain	HCW	-	M12, ≥ 4.6	$a_4 \ge 40^{1)}$ $a_4 \ge 50^{1)}$ $a_4 \ge 60^{1)}$	45 x 80 45 x 100 38 ⁶⁾ x 120	F _{ax,0,Rk} ⁷⁾	12,3 12,9 8,1 ⁶⁾
Shear strength parallel to the grain direction	HCW HCW-S	-	M12, ≥ 4.6	$a_4 \ge 40^{1)}$ $a_4 \ge 50^{1)}$ $a_4 \ge 60^{1)}$	45 x 80 45 x 100 38 ⁶⁾ x 120	Fv,0,Rk	24,4 28,2 28,2 ⁶⁾
Shear strength perpendicular to the grain direction	HCW HCW-S	-	M12, ≥ 4.6	$a_{4} \ge 40^{1})$ $a_{4} \ge 45^{1})$ $a_{4} \ge 50^{1})$ $a_{4} \ge 60^{1})$ $a_{4} \ge 70^{1})$ $a_{4} \ge 80^{1})$	45 x 80 _4) 45 x 100 38 ⁶⁾ x 120 45 x 140 45 x 140	Fv,90,Rk	6,8 15,0 ⁴⁾ 8,5 11,8 ³⁾ 8,9 ⁶⁾ 11,8 14,8

Table 2: Load carrying capacities for C24 and engineered timber products (ρ_k = 350 kg/m³), e.g. CLT, GL 24 h/c

Notes:

¹⁾ End- distance (a_3) is \ge 200 mm. checks on the net cross sections have to be considered in accordance to EN 1995-1-1 [3] ²⁾ Valid for nails: d x I = 4 x 50 mm acc. to EN 14592;

For other types, lengths or number of nails (or screws), calculations according to EN 1995-1-1 shall be done.

³⁾ Shear capacity with tension perpendicular to grain, reinforced with 2 fully threaded screws with a diameter of d = 8 mm.

⁴⁾ Shear capacity ($F_{v,90}$) in CLT C24 walls.

⁵⁾ Minimum distance $a_{3,t}$ is 50 mm for CLT.

⁶⁾ Technical data for 38 mm height are not covered in the ETA 21/0357, issued 31st of January 2025

⁷⁾ Also applicable for compression load-cases for HCW and HCW-S (e.g. during installation before the compression force is transferred to the mortar-layer; refer also to chapter 'Design information')

Updated: Feb-25

Parameter	Туре	Type of fastener Threaded rod	Timber C24 Distances (a ₃) and (a ₄) [mm]	Characteristic Load carrying capacities [kN]	
Withdrawal capacity	нсw	M12, ≥ 4.6	a₃ ≥ 50 mm a₄ ≥ 50 mm	$F_{ax,90,Rk}^{(1)}$	11,5
perpendicular to the grain			a₃ ≥ 58 mm a₄ ≥ 40 mm	$F_{ax,90,Rk}^{(1)}$	6,6

Table 3: HCW load carrying capacities with reduced end- and side distances for C24 and engineered timber products ($\rho_k = 350 kg/m^3$), e.g. CLT, GL 24h/c

¹⁾ Also applicable for compression load-cases for HCW and HCW-S (e.g. during installation before the compression force is transferred to the mortar-layer; refer also to chapter 'Design information')

 $F_{ax,\alpha,Rk}$ for timber member with lower or higher strength class as C24 (EN 338): EN 1995-1-1, 8.7 has to be applied. $F_{ax,\alpha,Rk,\rho_a} = \left(\frac{\rho_k}{\rho_a=350kg/m^3}\right)^{0,8} \times F_{ax,\alpha,Rk}$ (ETA-21/0357)

 $\rho_a \ldots$ associated characteristic density in kg/m³ for the strength class differing of C24

Load resistances for HCW and HCW-S in LVL and GLVL (ρ_k = 480 kg/m³)

Load direction in LVL and GLVL applications for HCW

	Fastener type		Timber				
Parameter	Туре	Rod	Туре	Edge distance (a₄) ^{¹)} [mm]	Min cross- section [mm²]	Characteris carrying ca [kN]	
Tension Strength	HCW	M12, 4.6	-	-	_	F _{t,Rk}	30,0
rension ou engui	11011	M12, 8.8	-	-	_	I L,TK	42,0
Withdrawal		M12,	LVL-P ²⁾		100 15		14,84
capacity flatwise surface	HCW	≥ 4.6	LVL-C ²⁾	≥ 60	120 x 45	F _{ax,90,Rk} ³⁾	10,27
Withdrawal		M12,	GLVL-P ²⁾				13,82
capacity edgewise surface	HCW	≥ 4.6	GLVL-C ²⁾	≥ 60	120 x 45	F _{ax,90,Rk} ³⁾	9,56
Shear strength parallel to the grain	HCW/	M12,	LVL-P ²⁾	≥ 60	120 x 45	Fv,o,rk	58,77
direction flatwise surface			LVL-C ²⁾	≥ 60			47,36
Shear strength parallel to the grain	HCW-S	≥ 4.6	GLVL-P ²⁾	≥ 60			36,77
direction edgewise				≥ 60			26,60
surface			GLVL-C ²⁾	≥ 40	80x 45		16,92
Shear strength perpendicular to the			LVL-P ²⁾	≥ 60			18,33
grain direction flatwise surface	HCW/ HCW-S	M12,	LVL-C ²⁾	≥ 60	120 x 45	Fv,90,rk	29,15
Shear strength perpendicular to the		≥ 4.6	GLVL-P ²⁾	≥ 60			10,51
grain direction			GLVL-C ²⁾	≥ 60			9,58
edgewise surface				≥ 40	80 x 45		4,79

Table 4: Load carrying capacities for LVL and GLVL (ρ_k = 480 kg/m³)

Notes: ¹⁾ End- distance (a_3) is ≥ 200 mm.

²⁾ P – Parallel layers; C – crosswise layers.

³⁾ Also applicable for compression load-cases for HCW and HCW-S (e.g. during installation before the compression force is transferred to the mortar-layer; refer also to chapter 'Design information')

 $F_{ax,\alpha,Rk}$ for LVL-P/C member with lower or higher characteristic gross density ρ_k =480 kg/m3 has to be applied according to the following equation:

$$F_{ax,\alpha,Rk,\rho_a} = \left(\frac{\rho_k}{\rho_a = 480 \ kg/m^3}\right)^{0,8} \times F_{ax,\alpha,Rk} \quad (\text{ETA-21/0357})$$

 $\rho_a \ ... \ \text{associated characteristic density in kg/m^3}$

Load resistances Hilti Hangerbolt

Analysis according EN 1995-1-1:

Force-fiber-angle $45^{\circ} \le \alpha \le 90^{\circ}$:

$$F_{ax,\alpha,Rk;HB} = \frac{n_{ef} \cdot f_{ax,k} \cdot d \cdot l_{ef}}{1,2 \cdot \cos^2 \alpha + \sin^2 \alpha} \left(\frac{\rho_k}{\rho_a}\right)^{0.8}$$
(EN 1995-1-1 (8.40a))

With

Axial withdrawal capacity for Hanger Bolts M12 (f _{u,k} ≥ 400 N/mm², d _{nom,timber} = 11mm)							
Embedment depth I _{ef,timber} [mm]							
Solid timber / CLT	Density ρ _k [kg/m³]	sity ρ _k 80 100		120	140		
		F _{ax,90,Rk}	F _{ax,90,Rk}	F _{ax,90,Rk}	F _{ax,90,Rk}		
Solid timber C24	350	9.7	11.8	13.9	16.0		
GL24h	385	10.4	12.7	15.0	17.2		

Table 5: Characteristic values of the withdrawal capacity of the hanger bolt for solid timber or cross-laminated timber in dependence of the density and thread length in kN

Characteristic tensile strength of the hanger bolt

Hilti HSW - analysis according EN 1995-1-1:

$$F_{t,Rk;HB} = n_{ef} \cdot f_{tens,k}$$
(EN 1995-1-1 (8.40c))

$$f_{tens,k} = 300 \cdot \pi \cdot \frac{d_i^2}{4} = 300 \cdot \pi \cdot \frac{8.7^2}{4} \cdot 10^{-3}$$
(DIN 20000-6: 2015-02 (8))

Hanger Bolt	Standards	F _{t,Rk} [kN]
M12x220/60 8.8	EN 1995-1-1	17.8

 Table 6: Hanger Bolt – Characteristic steel resistance (tension)

Shear load capacity for Hilti HSW

(DIN 20000-6: 2015-02, Chap. 3.3.3)

Analysis according EN 1995-1-1 Chapter 8.2.3 (Steel-to-timber connections)

$$F_{\nu,Rk;HB} = min \begin{cases} f_{h,k} t_1 d_{ef} \\ \int 2 + \frac{4 M_{y,Rk}}{f_{h,k} d_{ef} t_1^2} - 1 \end{bmatrix} + \frac{F_{ax,Rk}}{4} \\ 2.3 \sqrt{M_{y,Rk} f_{h,k} d} + \frac{F_{ax,Rk}}{4} \\ (EN 1995-1-1 (8.10c) \\ (EN$$

with

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90}\sin^2\alpha + \cos^2\alpha}$$
(EN 1995-1-1 (8.31))

$$f_{h,0,k} = 0.082(1 - 0.01d)\rho_k$$
 (EN 1995-1-1 (8.32))

$$d_{ef} = 1.1 \cdot d_i$$
 (EN 1995-1-1 Chap. 8.7.1)

$$k_{90} = \begin{cases} 1,35 + 0,015 \, d & \text{for softwoods} \\ 1,30 + 0,015 \, d & \text{for LVL} \\ 0,90 + 0,015 \, d & \text{for hardwoods} \end{cases}$$
(EN 1995-1-1 (8.33))

$$M_{y,Rk} = 0.3 \cdot f_{u,k} \cdot d_i^{2.6} \tag{EN 1995-1-1 (8.30)}$$

with the ultimate strength of steel $f_{u,k}$ = 400 N/mm²

In the equation 8.10 (d) and (e), the first term on the right-hand side is the load-carrying capacity according to the Johansen yield theory, whilst the second term $F_{ax,Rk}/4$ is the contribution from the rope effect. The contribution to the load-carrying capacity due to the rope effect should be limited to 100 percent of the contribution according to the Johansen yield theory.

Hanger Bolt	Standards	a₄ [mm]	F _{v,Rk} [kN]
M12x220/60 8.8	EN 1005 1 1	50	5.4 ¹⁾
M12x140/60 4.6	EN 1995-1-1	50	

Table 7: Hanger Bolt - Characteristic shear load capacity

¹⁾ Rope effect not considered

References

Standards and ETA-Documents used.

[1] EN 1992-4:2019-04	Eurocode 2: Design of concrete structures – Part 4
[2] EN 1993-1-1:2010-12	Eurocode 3: Design of steel structures – Part 1-1
[3] EN 1995-1-1:2010-12	Eurocode 5: Design of timber structures – Part 1-1
[4] ETA-21/0357 of 2024/03/01	Fastening Element Hilti HCW, HCW L
[5] DIN 20000-6:2015-02	Application of construction products in structures – Part 6: Dowel-type fasteners and connectors according to DIN EN 14592 and DIN EN 14545
[6] Whitepaper	Hilti Coupler Wood Timber-to-concrete connections using HCW and post-installed anchors