

HAC-C-P HOT-ROLLED ANCHOR CHANNELS

Technical Datasheet November 2020, Version 2.0

SELECTOR FOR HAC-C-P HOT-ROLLED ANCHOR CHANNELS

Туре			HAC-C-P hot-rolle	ed anchor channels				
		НАС-С-Р 40/22 НАС-С			С-Р 50/30			
	nel bolt type nel bolt size	HBC-40/22 M12 - M16	HBC-40/22-N M16	HBC-50/30 M12-M20	HBC-50/30-N M16-M20			
Unam	Cracked concrete							
rial	Uncracked concrete							
matei	NWC concrete							
Base material	LWC concrete							
_	Reinforced/unreinforced							
	European Technical Assessment (ETA)							
ata	Static 2D							
Technical data	Static 3D (only HDG)	-		-				
echni	Seismic	-	-	-	-			
F	Fatigue (only HDG)		-	•	-			
	Fire				•			
Ľ	Hot-dip galvanized (HDG)	•	•	•	•			
Specification	Stainless steel A4	•	•	•	•			
pecif	Tear-out band	ن	v	4	<i>٧</i>			
S	End caps	V	v	4	<i>٧</i>			
PROFI	S Anchor Channel software			v				

ETA approved

Internal tests

PRODUCT OVERVIEW

Approvals & Hilti technical data

Description	Issuing Authority	Approval No.
European Technical Assessment (ETA) covering 2D, 3D static, fatigue and fire loads	DIBt Berlin	ETA-17/0336

PRODUCT FEATURES

HAC-C-P hot-rolled anchor channel

Nomenclature of HAC-C-P hot-rolled anchor channels

 Hilti anchor channel C-shape 	Profile type and size	Anchor channel Iength [mm]	Ø Material finish
HAC-C-P (P = Premium)	40/22	300	F (HDG) or A4 (stainless steel)

Examples:
 Channel type
 Profile type/size
 Length
 Material finish

Dimensions of hot-rolled channel profile

Anchor channel	b _{ch}	h _{ch}	t _{nom}	d _{ch}	f	I _y
Anchor channel		[mm ⁴]				
HAC-C-P 40/22	40.1	23.0	2.7	18.0	6.0	21504
HAC-C-P 50/30	49.6	30.0	3.2	22.5	8.1	57781

Dimensions of anchor (welded I-anchor or round anchor)

	I-anchor ¹⁾				Round anchor						
Anchor channel	min l _a	t _w	b _h	t _h	W _A	A _h	min l _a	d _a	d _h	t _h	A _h
	[mm] [mr		[mm ²] [mm]			[mm ²]					
HAC-C-P 40/22	125.0	6.0	25.0	5.0	20.0	380	70.0	10.0	21.5	2.2	285
HAC-C-P 50/30	125.0	6.0	25.0	5.0	25.0	475	78.0	11.0	26.0	2.5	436

¹⁾ Available on request. Not on stock.

Types of anchors

 $\mathsf{h}_{_{\mathsf{ef}}}$ $\mathsf{h}_{\mathsf{nom}}$ la -da t⊦ dh

Welded I-anchor

Installation parameters for anchor channels

HAC-C-P			40/22	50/30	
Minimum effective embedment depth	h _{ef,min}		91	106	
Nominal embedment depth ²⁾	h _{nom}		93.2	108.5	
Minimum spacing	S _{min}		50		
Maximum spacing	S _{max}	[100.000]	250		
End spacing	х	[mm]	25 ¹⁾		
Minimum channel length	I _{min}		100		
Minimum edge distance (c_{11} , $c_{1,2}$ & c_{21} , c_{22})	C _{min}		50 75		
Minimum thickness of concrete member	h _{min}		100 120		

 $^{\rm 0}$ The end spacing may be increased from 25 to 35 mm $^{\rm 2}$ The nominal embedment depth may vary slightly. Please contact Hilti for further information.

X- Longitudinal shear- V_x Y- Perpendicular shear- V_y Z - Tension- N

Material of anchor channels and channel bolts

		Stainless steel			
Component	Mechanical properties	Coa	Coating		
1	2a	2b	2c	3	
Channel profile	1.0038, 1.0044, 1.0045 according to EN 10025: 2005 1.0976, 1.0979 according to EN 10149: 2013	Hot-dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/AC: 2009		1.4362, 1.4401 1.4404, 1.4571, 1.4578 according to EN 10088: 2005	
Anchor	1.0038, 1.0213, 1.0214 according to EN 10025: 2005 1.5523, 1.5535 according to EN 10263: 2002-02	-	Hot-dip galvanized ≥ 50 µm according to EN ISO 10684: 2004/AC: 2009	1.4362, 1.4401 1.4404, 1.4571, 1.4578 according to EN 10088: 2005 3)	
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Grade 50 or 70 according to EN ISO 3506: 2009	
Plain washer ¹⁾ according to ISO 7089: 2000 and ISO 7093-1: 2000	Hardness class A ≥ 200 HV	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 µm according to EN ISO 10684: 2004/ AC: 2009	1.4401, 1.4404 1.4571, 1.4578 according to EN 10088: 2005	
Hexagonal nut according to ISO 4032: 2012 or DIN 934: 1987-10 ²⁾	Property class 5 or 8 according to EN ISO 898-2: 2012	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 µm according to EN ISO 10684: 2004/ AC: 2009	Property class 50, 70 or 80 according to EN ISO 3506: 2009	

¹⁾ In scope of delivery only for notched bolts ²⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel

³ Anchors made of carbon steel according column 2a may also be used if they are welded and their concrete cover is more than 50 mm and the tempering colors are removed

Nomenclature of Hilti HBC channel bolts

Hilti channel bolt	Ø Bolt type	O Diameter	Bolt length [mm]	O Steel grade	O Finish or material
НВС	40/22	M12	50	8.8 or A4-70	F (HDG) or A4 (stainless steel)
HBC	40/22-N	M16	60	8.8	F (HDG)

Examples:
 Channel bolt
 Bolt type
 Diameter
 Bolt length
 Steel grade
 Finish or material

HBC-40/22 M12x50 8.8F (standard bolt)

HBC-40/22-N M16x60 8.8F (notched bolt)

Dimensions of channel bolts

		Dimensions					
Anchor channel	Channel bolt type	b ₁	b ₂	k	d		
	, jpc		[m	ım]			
		14.0		10.5	10		
HAC-C-P 40/22	HBC-40/22	14.0	33.0	11.5	12		
HAC-C-P 40/22		17.0			16		
	HBC-40/22-N	17.0	33.0	11.5	16		
		17.0	42.0	14.5	12		
	HBC-50/30	17.0			16		
HAC-C-P 50/30		21.0		15.5	20		
		21.0	42.0	15 5	16		
	HBC-50/30-N			15.5	20		

Channel bolts

HBC-40/22, HBC-50/30

HBC-40/22-N, HBC-50/30-N

Minimum spacing for channel bolts

Channel bolt			M10	M12	M16	M20
Minimum spacing between channel bolts	S _{cbo,min}	[mm]	50	60	80	100

 $s_{_{Cbo}}$ = center to center spacing between channel bolts (s $_{_{Cbo,min}}$ = 5d)

Channel bolts steel grade and corrosion class

Channel bolt	Carbon steel ¹⁾		Stainless steel ¹⁾		
Steel grade	4.6	8.8	A4-50	A4-70	
f _{uk} [N/mm²]	400	800 / 830 ²⁾	500	700	
f _{yk} [N/mm²]	240	640 / 660 ²⁾	210	450	
Corrosion class	G ³⁾ F ⁴⁾		R ⁵⁾		

¹⁾ Material properties according to table on page 59
²⁾ Material properties according to EN ISO 898-1: 2013
³⁾ Electroplated
⁴⁾ Hot-dip galvanized
⁵ Stainless steel

STEEL FAILURE MODES – STATIC RESISTANCE UNDER TENSION AND PERPENDICULAR SHEAR

Static/ quasi-static

Resistance values under tension loads - steel failure

HAC-C	-P anchor channel		40/22	50/30
Steel fa	ilure: Anchor			
+	Characteristic resistance	N _{Rk,s,a} [kN]	40.0	57.0
	Design resistance	N _{Rd,s,a} [kN]	22.2	31.7
Steel fa	ilure: Connection between and	chor and channel		
	Characteristic resistance	N _{Rk,s,c} [kN]	39.6	50.6
-	Design resistance	N _{Rd,s,c} [kN]	22.0	28.1
Steel fa	ilure: Local flexure of channel	lips		
	Characteristic or design spacing of the channel bolts	s _{ı,n} [mm]	79	98
	Characteristic resistance	Nº _{Rk,s,i} [kN]	47.9	50.5
	Design resistance	Nº _{Rd,s,i} [kN]	26.6	28.1

Resistance values under tension load - steel failure

HAC-C-P anchor channel			40/22	50/30
Steel failure: Fa	ilure by flexure of channel			
	Characteristic flexural resistance	M _{Rk,s,flex} [Nm]	1704	3448
	Design flexural resistance	M _{Rd,s,flex} [Nm]	1482	2998

Note: combined effects of loads (tension and shear) must be verified additionally. We recommend using Hilti Profis anchor channel software

Displacements under tension load

HAC-C-P anchor channel		40/22	50/30
Tension load	N [kN]	15.3	25.8
Short-term displacement 1)	δ _{N0} [mm]	1.1	1.4
Long-term displacement 1)	$\delta_{N^{\infty}}$ [mm]	2.2	2.8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Resistance values under perpendicular and longitudinal shear load - steel failure

Static/ quasi-static

HAC-C-F	anchor channel		40/22	50/30
Steel failu	re: Anchor			
	Characteristic resistance	V _{Rk,s,a,y} [kN]	58.1	100.0
		V _{Rk,s,a,x} [kN]	24.0	34.2
	Design resistance	V _{Rd,s,a,y} [kN]	38.7	66.7
	Design resistance	V _{Rd,s,a,x} [kN]	16.0	22.8
Steel failu	re: Connection between anch	or and channel		
	Characteristic resistance	V _{Rk,s,c,y} [kN]	58.1	100.0
4-		V _{Rk,s,c,x} [kN]	23.8	30.4
4	Design resistance	V _{Rd,s,c,y} [kN]	32.3	55.6
	Design resistance	V _{Rd,s,c,x} [kN]	13.2	16.9
Steel failu	re: Local flexure of channel lip	os under perpendi	cular shear	
// ->	Characteristic or design spacing of channel bolts	s _{ı,v} [mm]	80	99
	Characteristic resistance	$\begin{matrix} V^0_{Rk,s,l,y} \\ [kN] \end{matrix}$	55.0	91.7
	Design resistance	V° _{Rd,s,l,y} [kN]	30.6	50.9

Resistance values under perpendicular shear load in direction of the logitudinal axis of the channel- steel failure of hot-rolled anchor channel

Anchor channel		HAC-C-P 40/22	HAC-C-P 50/30				
Steel failure: Connection between channel lips and channel bolt							
	1.6	HBC-40/22-N M16 8.8F	12,5	-			
Characteristic resistance	V° _{Rk,s,l,x} [KN]	HBC-50/30-N M16 8.8F		8.3			
	[KU]	HBC-50/30-N M20 8.8F	-	8.3			
Installation factor	γ_{inst}	[-]	1.4	1.0			
		HBC-40/22-N M16 8.8F	5.0	-			
Design resistance	V ⁰ _{Rd,s,l,x} [kN]	HBC-50/30-N M16 8.8F	-	4.6			
	[KN]	HBC-50/30-N M20 8.8F	-	4.6			

Note: combined effects of loads (tension and shear) must be verified additionally. We recommend using Hilti Profis anchor channel software

Resistance values under tension and shear load – steel failure of channel bolts

quasi-static

hannel bolt d				M10	M12	M16	M20	
teel failure								
			HBC-40/22	4.6	23.2	-	-	-
				8.8	-	67.4	125.6	-
				A4-70	20.5	59.0	91.0	-
	Characteristic resistance	N _{Bk.s}	HBC-40/22-N	8.8	-	-	125.6	-
	Characteristic resistance	N _{Rk,s} [kN]		4.6	-	-	-	-
			HBC-50/30	8.8	-	67.4	125.6	147.
				A4-70	-	59.0	109.9	121.
			HBC-50/30-N	8.8	-	-	125.6	186.
Ĩ				4.6	11.6	-	-	-
			HBC-40/22	8.8	-	44.9	83.7	-
	Design resistance			A4-70	10.9	31.6	48.7	-
		$N_{Rd,s}$	HBC-40/22-N	8.8	-	-	83.7	124
		[kN]	HBC-50/30	4.6	-	-	-	-
				8.8	-	44.9	83.7	98.
				A4-70	-	31.6	58.8	64.
			HBC-50/30-N	8.8	-	-	83.7	124
			HBC-40/22	4.6	13.9	-	-	-
				8.8	23.2	33.7	62.8	-
				A4-70	24.4	35.4	65.9	-
		V _{Pk}	HBC-40/22-N	8.8	-	-	62.8	-
	Characteristic resistance	V _{Rk,s} [kN]		4.6	-	-	-	-
			HBC-50/30	8.8	-	33.7	62.8	101
-				A4-70	-	35.4	65.9	102
Ę.			HBC-50/30-N	8.8	-	-	62.8	101
				4.6	8.3	-	-	-
4			HBC-40/22	8.8	18.6	26.9	50.2	-
				A4-70	15.6	22.7	42.2	-
	Design registeres	V _{Rd s}	HBC-40/22-N	8.8	-	-	50.2	-
	Design resistance	V _{Rd,s} [kN]		4.6	-	-	-	-
			HBC-50/30	8.8	-	26.9	50.2	81.
				A4-70	-	22.7	42.2	65.
			HBC-50/30-N	8.8	-	-	50.2	81.3

Note: combined effects of loads (tension and shear) must be verified additionally. We recommend using Hilti Profis anchor channel software

Resistance values under shear load with lever arm – steel failure of channel bolts

Static/ quasi-static

Channel bolt					M10	M12	M16	M20
Steel failure								
				4.6	29.9 ¹⁾	-	-	-
	Characteristic flexural resistance	M⁰ _{Rk,s} [Nm]	HBC-40/22(-N) HBC-50/30(-N)	8.8	59.8	104.8	266.4	538.7
1000		[]		A4-70	52.3	91.7	233.1	454.4
	Design flexural M ⁴ resistance [N		HBC-40/22(-N) HBC-50/30(-N)	4.6	17.9 ¹⁾	-	-	-
		M⁰ _{Rd,s} [Nm]		8.8	47.8	83.8	213.1	430.9
		[]		A4-70	33.5	58.8	149.4	291.3
	Internal lever arm	а	HBC-40/22(-N)	40/22	24.3	25.7	27.3	-
	memanever ann	[mm]	HBC-50/30(-N)	50/30	-	29.9	31.7	33.9

¹⁾Not applicable for HBC-50/30

Note: combined effects of loads (tension and shear) must be verified additionally. We recommend using Hilti Profis anchor channel software

Displacements under perpendicular shear

HAC-C-P anchor channel		40/22	50/30
Shear load	V _y [kN]	29.0	39.7
Short-term displacement 1)	$\delta_{v_{0,y}}$ [mm]	2.0	2.7
Long-term displacement 1)	δ _{v∞,y} [mm]	3.5	4.0
Shear load	V _x [kN]	5.2	3.3
Short-term displacement 1)	$\delta_{v_{0,x}}$ [mm]	0.1	0.1
Long-term displacement 1)	δ _{v∞,x} [mm]	0.2	0.2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

CONCRETE FAILURE MODES – STATIC RESISTANCE UNDER TENSION AND PERPENDICULAR SHEAR

Resistance values under tension load – concrete failure

Static/ quasi-static

HAC-C-P ancho	40	/22	50/30				
Type of anchor (I-Anchor or R-Round Anchor)					R	I	R
Concrete failure: F	Pullout failure						
Characteristic resistance in cracked concrete C12/15			N _{Rk,p}	34.2	25.6	42.8	39.2
	Characteristic resistance in	uncracked concrete C12/15	[kN]	47.9	35.8	59.9	54.9
	Design resistance in cracke	d concrete C12/15	N _{Rd,p}	22.8	17.1	28.5	26.1
	Design resistance in uncrac	ked concrete C12/15	[kN]	31.9	23.9	39.9	36.6
	Amplification factor for othe	Ψс		$\Psi_{c} = -\frac{1}{1}$	f _{c,specified} I2MPa		
Concrete failure: 0	Concrete cone failure						
		cracked concrete	k _{cr,N}	8.0		8.2	
	Product factor k ₁ for characteristic resistance				1.5	11	.7
Concrete failure: S	Splitting						
1	Characteristic edge distanc	e	c _{cr,sp} [mm]	2	73	31	18
Ť	Characteristic spacing		s _{cr,sp} [mm]		2.0 -	C _{cr,sp}	

Note: combined effects of loads (tension and shear) must be verified additionally. We recommend using Hilti Profis anchor channel software

Resistance values under shear load - concrete failure

HAC-C-P	anchor channel	40/22	50/30					
Concrete f	Concrete failure: Pry out failure							
Product factor			k ₈	2.	0			
Concrete f	ailure: Concrete edge failure							
	Product factor k ₁₂ for	cracked concrete	k _{cr,V}	7.	5			
	characteristic resistance	uncracked concrete	k _{ucr,V}	10	.5			

Note: combined effects of loads (tension and shear) must be verified additionally. We recommend using Hilti Profis anchor channel software

STEEL FAILURE - COMBINED LOADING

Resistance values under combined tension and shear load

HAC-C-P anchor channel		40/22	50/30				
Steel failure: Local flexure of channel lips and flexure of channel							
Product factor	k ₁₃	1.0 ¹⁾					
Steel failure: Anchor and connection between	anchor and ch	nannel					
Product factor	k ₁₄	1.	0 ²⁾				
Concrete failure (Product factor)							
Without supplematery reinforcement		1	.5				
With supplematery reinforcement		1	.0				

 $^{1)}$ k₁₃ can be taken as 2.0 if V_{Rd,s.1} is limited to N_{Rd,s.1} $^{2)}$ k₁₄ can be taken as 2.0 if max(V_{Rd,s.a}; V_{Rd,s.o}) is limited to min(N_{Rd,s.a}; N_{Rd,s.o}) Note: We recommend to use Hilti Profis Anchor channel software

FIRE RESISTANCE

Resistance values under tension and shear load - fire exposure

Channel bolt diameter						M12	≥ M16		
Steel failure: Anchor, connection	between anchor and	channel, lo	cal flexure of	channel lip					
		R60	N _{Rk,s,fi}		1.7	3	.5		
	HAC-C-P 40/22	R90	=	(LA)	1.2	2	.2		
Characteristic and design resistance in cracked concrete		R120	$V_{Rk,s,fi}$		0.9	1	.5		
C20/25		R60	or N _{Rd,s,fi}	[kN]		3.8	3.9		
	HAC-C-P 50/30	R90	Rd,s,fi		-	2.5	2.9		
		R120	V _{Rd,s,fi}			1.9	2.4		

Minimum axis distance of reinforcement

HAC-C-P anchor channel		40/22	50/30	
Min axis distance	R60		35	50
	R90	a [mm]	45	50
	R120	[]	5	5

Fire exposure from more than one side c_{1.fi} = max (2 x h_{ef} ; 300mm)

Static/ quasi-static

Fire resistance

Combination of anchor channels and channel bolts under fatigue tension load

Anchor channel			Channel bolt			
Channel profile	Anchor type	Corrosion protection	Channel bolt	Diameter	Steel grade	Corrosion protection
			HBC-40/22	M12		
HAC-C-P 40/22	R	F	HBC-40/22	M16	8.8	G F
			HBC-50/30	M16		
HAC-C-P 50/30				M20		

Resistance values under fatigue tension load – steel failure after n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel		HAC-C-P 40/22	HAC-C-P 50/30	
Steel failure n		ΔN _{Rk.s.0,n} [kN]		
	≤ 10 ⁴	16.4	20.9	
	≤ 10 ⁵	7.7	9.0	
Characteristic resistance under fatigue	≤ 10 ⁶	3.2	4.2	
tension load after n load cycles without static preload	≤ 2 · 10 ⁶	2.6	3.7	
$(N_{Fd} = 0)$	≤ 5 · 10 ⁶	2.2	3.4	
	≤ 10 ⁸	2.0	3.3	
	> 10 ⁸	1.8	3.2	

Reduction factor $\eta_{c,fat}$ of characteristic fatigue resistance - concrete failure after n load cycles without static preload (N_{Ed} = 0) (Design method I according to EOTA TR 050)

Anchor channel		HAC-C-P 40/22	HAC-C-P 50/30	
Pull-out and concrete cone failure	n	η _{c,fat} [-]		
Reduction factor after n load cycles without	≤ 10 ⁴	0.736		
static preload (N _{Ed} = 0) for:	≤ 10 ⁵	0.665		
$\Delta N_{\rm ev} = n \cdot \cdot N_{\rm ev}$	≤ 10 ⁶	0.6	600	
	≤ 2 · 10 ⁶	0.5	582	
with N calculated according to page 12	≤ 5 · 10 ⁶	0.5	559	
with $N_{\text{Rk},p}$ calculated according to page 12 and $N_{\text{Rk},c}$ calculated according to	≤ 6 · 10 ⁷	0.5	500	
EOTA TR047, March 2018 or EN 1992-4: 2018	> 6 · 10 ⁷	0.5	500	

Fatique

Resistance values under fatigue tension load – steel failure with n $\rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	HAC-C-P 40/22	HAC-C-P 50/30	
Steel failure	$\Delta N_{_{Rk,s,O}}$, ∞ [kN]	
Characteristic fatigue limit resistance (n $\rightarrow \infty)$ without static preload (N $_{\rm Ed}$ = 0)	1.8	3.2	

Reduction factor $\eta_{c,fat}$ of characteristic fatigue limit resistance - concrete failure with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	HAC-C-P 40/22	HAC-C-P 50/30	HAC-C 52/34		
Pull-out and concrete cone failure	η _{c.fat} [-]				
Reduction factor for fatigue limit resistance $(n \rightarrow \infty)$ without static preload $(N_{Ed} = 0)$ for:					
$\begin{array}{lll} \Delta N_{\text{Rk},p,0,n} = & \eta_{\text{c,fat}} \cdot N_{\text{Rk},p} \\ \Delta N_{\text{Rk},c,0,n} = & \eta_{\text{c,fat}} \cdot N_{\text{Rk},c} \end{array}$		0.5			
with $N_{_{Rk,p}}$ calculated according to page 12 and $N_{_{Rk,c}}$ calculated according to EOTA TR047, March 2018 or EN 1992-4: 2018					

Determination of required T-Bolt length

Anchor channel	Height of channel lip (f)	T-Bolt type	m+s+u [mm]			
[-]	[mm]	[-]	M10	M12	M16	M20
HAC-C-P 40/22	6	HBC-40/20	13.9	17.3	21.8	-
HAC-C-P 40/22	6	HBC-40/22-N	-	-	21.8	-
HAC-C-P 50/30	8	HBC-50/30	-	17.3	21.8	27.0
HAC-C-P 50/30	8	HBC-50/30-N	-	-	21.8	27.0

I = nominal length of channel boltt_{fix} = fastenable thickness (Thickness of the attached part)f = height of channel lipm = thickness of the nut (ISO 4032)s = thickness of the washerthe mathematical states and the mathematical states are also been as the states

u = channel bolt projection

Note: Round the bolt length to the nearest standard channel bolt

Required T-Bolt length $I_{reg} = t_{fix} + f + (m+s+u)$

INSTALLATION INSTRUCTIONS

Installation instructions for HAC-C-P hot-rolled anchor channels

1) Correct selection of anchor channel in accordance with the design specification.

2) If cutting of the anchor channel is necessary, cut the channel and leave an end spacing.

x = 25 or 35 mm for round or welded anchors with profile: HAC-C-P 40/22HAC-C-P 50/30

1 <u>•!</u> 2 **3**a 3c HAC-C 5 6 7

Minimum two anchors per channel!

3) Position the anchor channel such that the channel lips will be flush with the surface of the concrete. Secure anchor channels to formwork (3a) or adjoining reinforcing steel (3b) with nails, staples, rivets, or wire ties as appropriate. Supports and attachments shall be adequate helping to ensure that anchor channels remain in position during concrete placement. Anchor channels shall not be pushed into fresh concrete (3c). Anchors shall not be bent, cut or otherwise modified (3d).

4) Anchor channels shall be protected from intrusion of concrete and slurry into the channel during concrete placement. Place and consolidate concrete around anchor channels to mitigate voids.

Make sure that channels are leveled with the concrete surface.

5) Installed anchor channels must be flush with the concrete surface.

6) and 7) Remove the foam filler after hardening of concrete and striking the formwork.

Installation instructions for HBC channel bolts

1) Select Hilti channel bolt type HBC in accordance with the design specification.

2) Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90 degrees.

3) Verify alignment of the bolt with the groove.

4) Verify that the channel bolt is not located outside of that part of the channel bounded by the outermost anchors.

5) Do not cut channel bolts.

6) Install the fixture distinguishing between installation type A and installation type B.

- For installation type A the fixture is in contact with the concrete surface and the channel profile.
- For installation type B the fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by a suitable steel element e.g. square plate washer is used helping to avoid introducing forces into the concrete during application of the installation torque T_{inst}. The steel element shall have sufficient stiffness to avoid deformation of the channel lips

7) Apply the installation torque T_{inst} to the channel bolt with a calibrated torque wrench. Do not exceed the value T_{inst} distinguishing between installation type A and installation type B.

Select the correct installation torque T_{inst} according to material, channel type, channel bolt diameter, and installation type.

Channel bolt		Tinst [Nm]				
			4.6	8.8	A4-50	A4-70
	M8	7		20	7	15
HBC-28/15	M10	10	-	40	-	30
	M12	13		60		50
	M10	15	13	15		22
HBC-38/17	M12	25	-	45		50
	M16	40		100		90
	M10	15	13	15		22
HBC-40/22	M12	25		45		50
	M16	30		100		90
	M12	25		45		50
HBC-50/30	M16	55	-	100		130
	M20	55		360		250
HBC-52/34	M20	55		360		-

¹⁾ T_{inst} must not be exdeeded

Installation instructions for HBC-N channel bolts

1) Select Hilti channel bolt type HBC in accordance with the design specification.

2) Place the channel bolt in the channel and lock the channel bolt in the channel by turning it 90 degrees.

3) Verify alignment of the bolt with the groove.

4) Verify that the channel bolt is not located outside of that part of the channel bounded by the outermost anchors.

5) Do not cut channel bolts.

6) Install the fixture distinguishing between installation type A and installation type B.

- For installation type A the fixture is in contact with the concrete surface and the channel profile.
- For installation type B the fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel element e.g. square plate washer is used helping to avoid introducing forces into the concrete during application of the installation torque T_{inst}. The steel element shall have sufficient stiffness helping to avoid deformation of the channel lips

7) Apply the installation torque T_{inst} to the channel bolt with a calibrated torque wrench. Do not exceed the value T_{inst} distinguishing between installation type A and installation type B.

Select the correct installation torque T_{inst} according to material, channel type, channel bolt diameter, and installation type.

		T _{inst} [Nm]		
Anchor Channel	Channel Bolt	A		
		8.8	8.8	
HAC-C-P 40/22		160	160	
HAC-C-P 40L	HBC-40/22-N M16	100		
HAC-C 40/22		60	160	
HAC-C-P 50/30			185	
HAC-C-P 50L		185		
HAC-C 50/30	HBC-50/30-N M16		COL	
HAC-C 52/34				
HAC-C-P 50/30				
HAC-C-P 50L		000	320	
HAC-C 50/30	HBC-50/30-N M20	320		
HAC-C 52/34				

Hilti Aktiengesellschaft 9494 Schaan, Liechtenstein P +423-234-2111

www.facebook.com/hiltigroup www.hilti.com

