

HILTI HIT-CT 1 INJECTION MORTAR ETA-11/0354 (01.09.2020)

Centre Scientifique et

Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

European Technical Assessment

ETA-11/0354 of 01/09/2020

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial: <i>Trade name</i>	Injection system Hilti HIT-CT 1
Famille de produit : <i>Product family</i>	Cheville à scellement de type « à injection » pour fixation dans le béton : tailles M8 à M24 Bonded injection type anchor for use in concrete: sizes M8 to M24
Titulaire: <i>Manufacturer</i>	Hilti Corporation Feldkircherstrasse 100 FL-9494 Schaan Principality of Liechtenstein
Usine de fabrication: Manufacturing plants	Hilti plants
Cette evaluation contient: This Assessment contains	19 pages incluant 16 pages d'annexes qui font partie intégrante de cette évaluation 19 pages including 16 annexes which form an integral part of this assessment
Base de l'ETE: <i>Basis of ETA</i>	EAD 330499-01-0601 EAD 330499-01-0601
Cette évaluation remplace: This Assessment replaces	ETE-11/0354 du 06/09/2019 <i>ETA-11/0354 dated 06/09/2019</i>

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The Hilti HIT-CT 1 injection system is bonded anchor (injection type) consisting of a mortar cartridge with Hilti HIT-CT 1 injection mortar and a steel element.

The steel element can be made of zinc plated carbon steel (HAS-U, HIT-V), reinforcing bar (rebar), stainless steel (HAS-U-A4, HIT-V-R), or high corrosion resistant stainless steel (HAS-U-HCR, HIT-V-HCR).

The steel element is placed into a rotary/percussion drilled hole filled with the injection mortar and is anchored via the bond between the metal part and concrete.

An illustration of the product is provided in Annex A

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static loads, for Hilti HIT-CT 1 with threaded rod, HAS-U, HIT-V	See Annex C1, C2
Characteristic resistance for static and quasi static loads, for Hilti HIT-CT 1 with rebars	See Annex C3, C4
Displacements	See Annex C5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 **Protection against noise (BWR 5)**

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 01/09/2020 by

The original French version is signed

La cheffe de division, Anca CRONOPOL

Official Journal of the European Communities L 254 of 08.10.1996

Installation conditions

Figure A1:

Figure A2: Reinforcing bar (rebar)

 Injection system Hilti HIT-CT 1
 Annex A1

 Product description
 Annex A1

 Installed condition
 Annex A1

Designation	Material
Reinforcing bars (re	ebars)
Rebar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$
Metal parts made of	zinc coated steel
HAS-U-5.8(HDG), HIT-V-5.8(HDG), Threaded rod	Strength class 5.8, $f_{uk} = 500 \text{ N/mm}^2$, $f_{yk} = 400 \text{ N/mm}^2$ Elongation at fracture ($I_0 = 5d$) > 8% ductile Electroplated zinc coated $\ge 5 \ \mu m$, (F) or (HDG) hot dip galvanized $\ge 45 \ \mu m$
HAS-U-8.8(F), HIT-V-8.8(F), Threaded rod	$ \begin{array}{l} \mbox{Strength class 8.8, } f_{uk} = 800 \ \mbox{N/mm}^2, \ f_{yk} = 640 \ \mbox{N/mm}^2 \\ \mbox{Elongation at fracture (} I_0 = 5d) > 12\% \ \mbox{ductile} \\ \mbox{Electroplated zinc coated} \geq 5 \ \mbox{\mum}, \ \mbox{(F) or (HDG) hot dip galvanized} \geq 45 \ \mbox{\mum} \\ \end{array} $
Hilti Meter rod AM 8.8 (HDG)	$ \begin{array}{l} \mbox{Strength class 8.8, } f_{uk} = 800 \ \mbox{N/mm}^2, \ f_{yk} = 640 \ \mbox{N/mm}^2 \\ \mbox{Elongation at fracture (I_0 = 5d) > 12\% \ \mbox{ductile} \\ \mbox{Electroplated zinc coated} \geq 5 \ \mbox{\mu}m, \ \mbox{or (HDG) hot dip galvanized} \geq 45 \ \mbox{\mu}m \end{array} $
Washer	Electroplated zinc coated \ge 5 μ m, hot dip galvanized \ge 45 μ m
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated \ge 5 µm, hot dip galvanized \ge 45 µm
Metal parts made of EN 1993-1-4:2006+A	stainless steel corrosion resistance class III according
HAS-U-A4, HIT-V-R	Strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$ Elongation at fracture ($I_0 = 5d$) > 8% ductile Stainless steel A4 according to EN 10088-1: 2014
Threaded rod	Strength class 70, $f_{uk} = 700 \text{ N/mm}^2$, $f_{yk} = 450 \text{ N/mm}^2$ Elongation at fracture ($I_0 = 5d$) > 8% ductileStainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Washer	Stainless steel A4 according to EN 10088-1: 2014
Nut	Strength class of nut adapted to strength class of threaded rod. Stainless steel A4 according to EN 10088-1: 2014
Metal parts made of EN 1993-1-4:2006+A	
HAS-U-HCR, HIT-V-HCR	For \leq M20: f _{uk} = 800 N/mm ² , f _{yk} = 640 N/mm ² For > M20: f _{uk} = 700 N/mm ² , f _{yk} = 400 N/mm ² , Elongation at fracture (I ₀ = 5d) > 8% ductile High corrosion resistant steel according to EN 10088-1:2014
Threaded rod	For \leq M20: f _{uk} = 800 N/mm ² , f _{yk} = 640 N/mm ² For > M20: f _{uk} = 700 N/mm ² , f _{yk} = 400 N/mm ² , Elongation at fracture (I ₀ = 5d) > 8% ductile High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014
Washer	High corrosion resistant steel according to EN 10088-1:2014
Nut	Strength class of nut adapted to strength class of threaded rod. High corrosion resistant steel according to EN 10088-1:2014

Injection system Hilti HIT-CT 1

Product	description
Materials	-

Specifications of intended use

Anchorages subject to:

• Static and quasi static loading in concrete.

Base material:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2013+A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206-1:2013+A1:2016.
- Uncracked and cracked concrete.
- Dry or wet concrete (not in water-filled drill holes)

Temperature in the base material:

- At installation
- -5 °C to +40 °C
- In-serviceTemperature range I:-40 °C to +40 °C(max. long term temperature +24 °C and max. short term temperature +40 °C)Temperature range II:-40 °C to +80 °C(max. long term temperature +50 °C and max. short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions zinc coated steel (threaded rods, HAS-U, HIT-V), stainless steel (threaded rods, HAS-U-A4, HIT-V-R) or high corrosion resistant steel (threaded rods, HAS-U-HCR, HIT-V-HCR).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. stainless steel (threaded rods, HAS-U-A4, HIT-V-R) or high corrosion resistant steel (threaded rods, HAS-U-HCR, HIT-V-HCR).
- Structures subject to permanently damp internal condition or in other particular aggressive conditions high corrosion resistant steel (threaded rods, HAS-U-HCR, HIT-V-HCR).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with EN 1992-4:2018

Injection system Hilti HIT-CT 1

Intended use Specifications

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Table B2: Installation parameters of threaded rod, HAS-U and HIT-V

Threaded rod, HAS-U, HIT-V			M8	M10	M12	M16	M20	M24
Diameter of element	d	[mm]	8	10	12	16	20	24
Nominal diameter of drill bit	do	[mm]	10	12	14	18	22	28
Threaded rod, HAS-U, HIT-V: Effective embedment depth and drill hole depth	$h_{ef} = h_0$	[mm]	64 to 96	80 to 120	96 to 144	128 to 192	160 to 240	192 to 288
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22	26
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm			h _{ef} + 2⋅d₀	
Maximum torque	T _{max}	[Nm]	10	20	40	80	150	200
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120
Minimum edge distance	Cmin	[mm]	40	45	45	50	55	60

HAS-U-...

Ι

Marking:

Steel grade number and length identification letter: e.g. 8L

HIT-V-...

Marking: $5.8 - \ell$ = HIT-V-5.8 M...x ℓ $5.8F - \ell$ = HIT-V-5.8F M...x ℓ $8.8 - \ell$ = HIT-V-8.8 M...x ℓ $8.8F - \ell$ = HIT-V-8.8F M...x ℓ $R - \ell$ = HIT-V-R M ...x ℓ HCR - ℓ = HIT-V-R M ...x ℓ

 Injection system Hilti HIT-CT 1

 Intended use

 Installation parameters

Reinforcing bar (rebar)			φ8	φ 10	¢	12	φ 14	φ 16	φ 20	φ 25
Diameter	φ	[mm]	8	10	1	2	14	16	20	25
Effective embedment depth and drill hole depth	h _{ef} = h ₀	[mm]	64 to 96	80 to 120	t	96 o 44	112 to 168	128 to 192	160 to 240	200 to 300
Nominal diameter of drill bit	do	[mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	30 ¹⁾ 32 ¹⁾
Minimum thickness of concrete member	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm	1			h _{ef} + 2⋅d₀		
Minimum spacing	Smin	[mm]	40	50	6	50	70	80	100	125
Minimum edge distance	Cmin	[mm]	40	45	4	15	50	50	65	70

Table B3: Installation parameters of reinforcing bar (rebar)

¹⁾ Each of the two given values can be used.

Reinforcing bar (rebar)

For rebar bolt

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010.
- Rib height of the bar h_{rib} shall be in the range 0,05⋅φ ≤ h_{rib} ≤ 0,07⋅φ (φ: Nominal diameter of the bar; h_{rib}: Rib height of the bar).

Injection system Hilti HIT-CT 1

Intended use Installation parameters

Table B4:Minimum curing time1)

Temperatu	re in t T	he base material	Maximun	n working time t _{work}	Minimum c t _{cu}	curing time ^{rre¹⁾}
-5 °C	to	-1 °C	60	min	6	hours
0 °C	to	4 °C	40	min	3	hours
5 °C	to	9 °C	25	min	2	hours
10 °C	to	19 °C	10	min	90	min
20 °C	to	29 °C	4	min	75	min
30 °C	to	40 °C	2	min	60	min

¹⁾ The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Injection system Hilti HIT-CT 1

Intended use Maximum working time and minimum curing time

Elem	nents		Drill and clean		Installation
Threaded rod, HAS-U, HIT-V	Rebar	Hamme Drill bit	er drilling Hollow drill bit TE-CD, TE-YD	Brush	Piston plug

Size	Size	d₀ [mm]	d₀ [mm]	HIT-RB	HIT-SZ
M8	φ8	10	-	10	-
M10	φ 8, φ 10	12	-	12	12
M12	φ 10, φ 12	14	14	14	14
-	φ 12	16	16	16	16
M16	φ 14	18	18	18	18
-	φ 16	20	20	20	20
M20	-	22	22	22	22
-	φ 20	25	25	25	25
M24	-	28	28	28	28
-	φ 25	30	30	30	30
-	φ 25	32	32	32	32

Table B5: Parameters of cleaning and setting tools

Cleaning alternatives

Injection system Hilti HIT-CT 1

Intended use	
Parameters of cleaning and setting tools Cleaning alternatives	

Hole drilling	
a) Hammer drilling:	For dry or wet concrete only.
	Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the dust and cleans the drill hole during drilling when used in accordance with the user's manual. After drilling is completed, proceed to the "injection preparation" step in the installation instruction.

Injection system Hilti HIT-CT 1

Intended use Installation instructions

Drill hole cleaning:	Just before setting an anchor, the drill hole must be free of dust and Inadequate hole cleaning = poor load values.	d debris.
Manual Cleaning (MC)	: Uncracked concrete. For drill hole diameters $d_0 \le 20$ mm and drill h	nole depths h₀ ≤ 10·d
◆4x → 1+11+7*1	The Hilti hand pump may be used for blowing out drill holes up to d and embedment depths up to $h_{ef} \le 10 \cdot d$. Blow out at least 4 times from the back of the drill hole until return a noticeable dust.	
← 4x →	Brush 4 times with the specified brush (see Table B5) by inserting the HIT-RB to the back of the hole (if needed with extension) in a twisting removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be reproper brush diameter.	ng motion and
	Blow out again with the Hilti hand pump at least 4 times until return noticeable dust.	air stream is free of
Compressed Air Clear	hing (CAC): For all drill hole diameters d ₀ and all drill hole depths h ₀ .	
◆2x→	Blow 2 times from the back of the hole (if needed with nozzle extendent length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until return noticeable dust. For drill hole diameters \geq 32 mm the compressor has to supply a model 140 m ³ /h.	n air stream is free of
	Brush 2 times with the specified brush (see Table B5) by inserting the HIT-RB to the back of the hole (if needed with extension) in a twisting removing it. The brush must produce natural resistance as it enters the drill hole drill hole \emptyset) - if not the brush is too small and must be replaced with diameter.	ng motion and e (brush Ø ≥
	Blow again with compressed air 2 times until return air stream is fre	e of noticeable dust.
Injection system Hilti	HIT-CT 1	
Intended use	3	Annex B7

Threaded rod, HAS-U, HIT-V			M8	M10	M12	M16	M20	M24	
Installation safety factor									
Hammer drilling	γinst	[-]			1	,2			
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]	,	-		1	,2		
Steel failure threaded rods									
Characteristic resistance	N _{Rk,s}	[kN]			As	• f _{uk}			
Partial factor Grade 5.8	γMs,N ¹⁾	[-]			1	,5			
Partial factor Grade 8.8	γms,n ¹⁾	[-]			1	,5			
Partial factor HAS-U-A4, HIT-V-R	γ _{Ms,N} 1)	[-]			1,	87			
Partial factor HAS-U-HCR, HIT-V-HCR	γms,n ¹⁾	[-]			1,5			2,1	
Combined pullout and concrete cone f	ailure								
Uncracked concrete C20/25									
Temperature range I: 40°C / 24°C	τRk,ucr	[N/mm ²]	12	11	11	10	9,5	9,0	
Temperature range II: 80°C / 50°C	τRk,ucr	[N/mm ²]	11	11	10	9,5	9,0	8,5	
Cracked concrete C20/25									
Temperature range I: 40°C / 24°C	τRk,cr	[N/mm ²]	-	2,5	2,5	2,5	-	-	
Temperature range II: 80°C / 50°C	τ _{Rk,cr}	[N/mm ²]	-	2,5	2,5	2,5	-	-	
Influence factors ψ on bond resistance	trk								
Influence of concrete strength									
		C30/37			1,	06			
Uncracked concrete: Factor for concrete compressive strength	Ψc	C40/50			1,	11			
		C50/60			1,	15			
		C30/37			1,	00			
Cracked concrete: Factor for concrete compressive strength	Ψc	C40/50			1,	00			
		C50/60			1,	00			
Concrete cone failure									
Factor for uncracked concrete	k _{ucr}	[-]			11	I,0			
Factor for cracked concrete	k _{cr}	[-]			7	,7			
Edge distance	Ccr,N	[mm]			1,5	· h _{ef}			
Spacing	S _{cr,N}	[mm]	3,0 ⋅ h _{ef}						

Table C1: Essential characteristics for threaded rods under tension load in concrete

Injection system Hilti HIT-CT 1

Performances

Essential characteristics under tension load in concrete

Table C2: continued							
Threaded rod, HAS-U, HIT-V		M8	M10	M12	M16	M20	M24
Splitting failure							
	h / hef ≥ 2	.,0 1,0	· hef	h/h _{ef} ▲ 2,0			
Edge distance c _{cr,sp} [mm] for	2,0 > h / hef > 1	,3 4,6 · he	4,6 · hef - 1,8 · h			\	
	h / h _{ef} ≤ 1	,3 2,2	6 · h _{ef}		1,0 h _{ef}	2,26 h _{ef}	→ C _{cr,sp}
Spacing	S _{cr,sp} [mr	n]] 2 · C _{cr,sp}				

Injection system Hilti HIT-CT 1

Performances Essential characteristics under tension load in concrete

Threaded rod, HAS-U, HIT-V			M8	M10	M12	M16	M20	M24	
Steel failure without lever arm								<u>.</u>	
Characteristic resistance	V _{Rk,s}	[kN]			0,5 · /	$A_s \cdot f_{uk}$			
Partial factor grade 5.8	γ _{Ms,v} 1)	[-]			1,	25			
Partial factor grade 8.8	γ _{Ms,v} 1)	[-]	1,25						
Partial factor HAS-U-A4, HIT-V-R	γ _{Ms,v} 1)	[-]	1,56						
Partial factor HAS-U-HCR, HIT-V-HCR	γ _{Ms,v} 1)	[-]	1,25						
Ductility factor	k 7	[-]	1,0						
Steel failure with lever arm									
Bending moment	M ⁰ Rk,s	[Nm]			1,2 · V	Vel • f _{uk}			
Ductility factor	k 7	[-]			1	,0			
Concrete pry-out failure									
Pry-out factor	k ₈	[-]	2,0						
Concrete edge failure									
Effective length of fastener	l _f	[mm]	min (h _{ef} ; 12·d _{nom})						
Outside diameter of the anchor	d _{nom}	[mm]	8 10 12 16 20						

Injection system Hilti HIT-CT 1

Performances Essential characteristics under shear load in uncracked concrete

Table C4: Essential characteristics for reinforcing bars (rebars) under tension load in uncracked concrete

Reinforcing bar (rebar)			φ8	φ 10	φ 12	φ14	φ 16	φ 20	φ 25		
Installation safety factor											
Hammer drilling	γinst	[-]				1,2					
Hammer drilling with Hilti hollow drill bit TE-CD or TE-YD	γinst	[-]		-			1,2				
Steel failure											
Rebar B500B acc. to DIN 488:2009-08 $^{\rm 2)}$	$N_{Rk,s}$	[kN]	28	43	62	85	111	173	270		
Partial factor ³⁾	γ _{Ms,N} 1)	[-]				1,4					
Combined pullout and concrete cone fa	ailure										
Uncracked concrete C20/25											
Temperature range I: 40°C / 24°C	τ _{Rk,ucr}	[N/mm ²]	7,0	7,5	7,5	7,5	7,5	8,0	8,0		
Temperature range II: 80°C / 50°C	τRk,ucr	[N/mm ²]	7,0	7,0	7,0	7,0	7,0	7,5	7,5		
Influence factors ψ on bond resistation	nce τ _{Rk}								-		
Influence of concrete strength											
		C30/37	1,06								
Factor for concrete compressive strength	ψc	C40/50				1,11	1,11				
		C50/60	1				1,15				
Concrete cone failure											
Factor for uncracked concrete	k _{ucr}	[-]				11,0					
Factor for cracked concrete	k cr	[-]				7,7					
Edge distance	Ccr,N	[mm]				1,5 · he	f				
Spacing	Scr,N	[mm]	3,0 · h _{ef}								
Splitting failure		1									
	I	h / h _{ef} ≥ 2,0		1,0 · h _{ef}		h/h _{ef}					
Edge distance	2,0 > h / h _{ef} > 1,3		4,6	h _{ef} - 1,8	⊦ h	2,0	<u> </u>				
c _{cr,sp} [mm] for		n / h _{ef} ≤ 1,3		2,26 · h _{ef}		,-					
Spacing	Scr,sp	[mm]	2	., 20 mer		2 · Ccr,sp	1,0 h _{ef}	2,26 h _{ef}	C _{cr,sp}		

¹⁾ In absence of national regulations.

²⁾ Values need to be calculated acc. EAD 330499-01, Eq. 2.1, if rebars do not fulfil the requirements acc. DIN 488.

³⁾ Values need to be calculated acc. EN 1992-4:2018, tab 4.1, if rebars do not fulfil the requirements acc. DIN 488.

Injection system	Hilti HIT-CT 1
-------------------------	----------------

Performances

Essential characteristics under tension load in uncracked concrete

Table C5: Essential characteristics for reinforcing bars (rebars) under shear load in uncracked concrete

Reinforcing bar (rebar)			φ 8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 25
Steel failure without lever arm				I	1	1	1	1	1
Rebar B500B acc. to DIN 488:2009-08 ²⁾	V _{Rk,s}	[kN]	14	22	31	42	55	86	135
Partial factor ³⁾	γ _{Ms,V} 1)	[-]	1,5						
Ductility factor	k7	[-]				1,0			
Steel failure with lever arm									
Rebar B500B acc. to DIN 488:2009-08 ²⁾	M ⁰ Rk,s	[Nm]	33	65	112	178	265	518	1012
Partial factor ³⁾	γ _{Ms,V} 1)	[-]	1,5						
Ductility factor	k7	[-]				1,0			
Concrete pryout failure									
Pry-out factor	k ₈	[-]				2,0			
Concrete edge failure									
Effective length of fastener	l _f	[mm]	min (h _{ef} ; 12 · d _{nom})					min (h _{ef} ; 300)	
Outside diameter of the anchor	dnom	[mm]	8 10 12 14 16 20					25	

¹⁾ In absence of national regulations.

²⁾ Values need to be calculated acc. EAD 330499-01, Eq. 2.1, if rebars do not fulfil the requirements acc. DIN 488.

³⁾ Values need to be calculated acc. EN 1992-4:2018, tab 4.1, if rebars do not fulfil the requirements acc. DIN 488.

Injection system Hilti HIT-CT 1

Performances Essential characteristics under shear load in uncracked concrete

Table C6: Displacements under tension load

Threaded rod, HAS-U	, HIT-V		M8	M10	M12	M16	M20	M24
Uncracked concrete				1		1		1
Temperature range I: 40	°C / 24°C							
Displacement	δνο	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,07
Displacement	δn∞	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,08
Temperature range II: 80	0°C / 50°C							
Displacement	δνο	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,07
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,08
Cracked concrete								
Temperature range I: 40	°C / 24°C							
Displacement	δνο	[mm/(N/mm²)]	-	0,22	0,34	0,37	-	-
Displacement	δ _{N∞}	[mm/(N/mm²)]	-	0,22	0,34	0,37	-	-
Temperature range II: 80	0°C / 50°C	·						
Displacement	δνο	[mm/(N/mm²)]	-	0,22	0,34	0,37	-	-
Displacement	δ _{N∞}	[mm/(N/mm²)]	-	0,22	0,34	0,37	-	-

Table C7: Displacements under shear load

Threaded rod, HAS-U, HIT-V,			M8	M10	M12	M16	M20	M24
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δv∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

Table C8: Displacements under tension load

Reinforcing bar (rebar)			φ 8	φ10	φ 12	φ14	φ 16	φ 20	φ 25
Uncracked concrete									
Temperature range I: 40	°C / 24°C								
Displacement	δνο	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,07	0,07
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,07	0,07	0,07	0,08	0,08	0,08	0,08
Temperature range II: 80)°C / 50°C								
Displacement	δ _{N0}	[mm/(N/mm²)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δn∞	[mm/(N/mm²)]	0,09	0,08	0,07	0,06	0,06	0,05	0,05

Injection system Hilti HIT-CT 1

Performances Displacements

Table C9: Displacements under shear load

Reinforcing bar (rebar)			φ 8	φ 10	φ 12	φ14	φ 16	φ 20	φ 25
Displacement	δνο	[mm/kN]	0,09	0,07	0,06	0,05	0,05	0,04	0,03
Displacement	δv∞	[mm/kN]	0,14	0,11	0,09	0,08	0,07	0,06	0,05

Injection system Hilti HIT-CT 1

Performances Displacements